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Brandeis University
jbosque@delicias.dia.fi.upm.es

James Pustejovsky
Computer Science Department

Brandeis University
jamesp@cs.brandeis.edu

Abstract

This paper presents a language for the semantic annotation of images, focusing on event types,
their participants, and their spatial and orientational configurations. This language, ImageML, is a
self-contained layered specification language, building on top of ISOspace, as well as some elements
from Spatial Role Labeling and SpatialML. An annotation language characterizing such features
surrounding an event and its various aspects could play a significant role in structured image retrieval,
and a mapping of annotated semantic entities and the image’s low-level features will likely assist
event recognition and description generation tasks.

1 Introduction

The role of image annotation is becoming increasingly important in the context of algorithms that allow
for efficient access and retrieval of images from large datasets; for this reason, it has become an active
topic of research in both the computer vision and natural language processing communities. Keyword
annotation (tagging) approaches include interactive annotation games (Von Ahn and Dabbish, 2004;
Von Ahn et al., 2006; Ho et al., 2009) and automatic keyword annotation, where, given an image, the
system provides the appropiate (or potential) labels that describe its content (Li and Fei-Fei, 2007; Luo
et al., 2009; Feng and Lapata, 2010). On the other hand, efforts in the task of image caption generation
have experienced a growth due to the advances in object recognition. Here, objects as well as relations
among them have to be identified, and the output must be a grammatical (and, if possible, natural)
sentence that correctly describes the image content (Kiros et al., 2014). Approaches include those of
Farhadi et al. (2010); Elliott and Keller (2013); Kiros et al. (2014) and Karpathy and Fei-Fei (2014),
among many others.

The current MPEG-7 format encodes several dimensions of information about image structure (vi-
sual features, spatio-temporal structure, decomposition in regions or shots, etc.) and semantic content
by means of its descriptors (Martinez, 2004). Semantic annotation with MPEG-7 captures events repre-
sented in the image as well as participants (objects and agents), the time, location, etc., and annotation
and retrieval tools based on this format were presented in Lux et al. (2003); Lux and Granitzer (2005)
and Lux (2009). The use of ontologies and thesaurus in the annotation of the semantic content of an
image has been developed in the art history domain in Hollink et al. (2003); Hollink (2006) and Klavans
et al. (2008), as well as in the context of multimedia semantic indexing (Nemrava et al. (2008)).

This paper approaches the annotation of image content outside the task of automatic image caption
generation. Even though MPEG-7 approaches capture information about the event, its participants and
the relations among them, this annotation could be enriched to include aspects that go beyond the basic
categories addressed so far (location, time, event, participants), such as: the spatial relations between par-
ticipants, the motion of objects, the semantic role of participants, their orientation and frame of reference,
the relations among events in the image, or the characterization of the image as a whole as prototypical,
given the event in question. These aspects can be included following text annotation schemes such as
SpatialML (Mani et al., 2010), ISOspace (Pustejovsky et al., 2011) and Spatial Role Labeling (Kord-
jamshidi et al., 2010). Pustejovsky and Yocum (2014) in fact adapt ISOspace to the annotation of the



spatial configuration of objects in image captions, in particular to distinguish the way captions refer to
the structure versus the content of the image. In this paper, we introduce ImageML for this purpose, and
we describe how this richer information concerning the image can be incorporated as a self-contained
layered annotation1, making explicit reference to several embedded specifications, i.e., ISO-TimeML
and ISOspace (ISO/TC 37/SC 4/WG 2 (2014); Pustejovsky et al. (2010)).2

2 Problems Posed by Images

Text-based image search assumes that images have an annotation of some kind or at least a text in which
to perform the query, and, that the text of the web page on which the image appears is related to the
image content. These two assumptions, however, do not always hold. Content-based image retrieval
approaches the problem by recording the image’s low-level features (texture, color layout, etc.) and
semantic annotation of images aims to bridge the gap between those low-level features and the image
semantic content.

However, efforts in keyword annotation, MPEG-7-based semantic annotation, and ontology-based
annotation do not capture some aspects to which users might turn their attention when searching for an
image. Although unstructured labels might be enough for image filtering or simple queries (dog running
in park), more complex ones require a richer annotation that includes a description about the orientation
of figures with respect to the viewer, the spatial relations among objects, their motion, appearance, or
the structure of the event (including it sub-events) in which they might be involved; e.g., a user needs a
picture of someone running towards the camera while listening to music.

MPEG-7-based annotation effectively captures the ‘narrative world’ of the image (Benitez et al.,
2002), but does not provide a thorough annotation of the representation of figures or a characterization
of their motion according to different frames of reference. Furthermore, image captions alone have a
fixed frame of reference (viewer) and descriptions might refer both to image structure or image content;
cf. (Pustejovsky and Yocum, 2014), which makes the annotation of this distinction an important task
towards a more accurate image retrieval.

By capturing information about: (1) the event (type of event, any sub-events, any motion triggered by
it, or any other event the image might refer to, if it is ambiguous); (2) the participants of the event (their
type of entity, their semantic roles, their appearance, and their representation); and (3) the setting and
the time of the depicted situation, ImageML would not only contribute to a more precise image querying
capability, but it could also assist in event recognition and automatic caption generation tasks.

3 Annotating Spatial Relations in Images with ISOspace

The annotation of spatial information in text involves at least the following: a PLACE tag (for loca-
tions, entities participating in spatial relations, and paths); LINK tags (for topological relations, direction
and orientation, time and space measurements, and frames of reference); and a SIGNAL tag (for spatial
prepositions)3. ISOspace has been designed to capture both spatial and spatiotemporal information as
expressed in natural language texts (Pustejovsky et al. (2012)). We have followed a strict methodology
of specification development, as adopted by ISO TC37/SC4 and outlined in Bunt (2010) and Ide and
Romary (2004), and as implemented with the development of ISO-TimeML Pustejovsky et al. (2005)
and others in the family of SemAF standards.

There are four spatial relation tags in ISOspace, that are relevant to the definition of ImageML,
defined as follows:

(1) a. QSLINK – qualitative spatial relations;
b. OLINK – orientation relations;
c. MLINK – dimensions of a region or the distance between them.

1Roser and Pustejovsky (2008); Lee (2013).
2The initial specification of a semantic annotation for images is first outlined in Bosque-Gil (2014).
3For more information, cf. Pustejovsky et al. (2012).



d. MOVELINK – for movement relations;

QSLINKs are used in ISOspace to capture topological relationships between tag elements captured in
the annotation. The relType attribute values come from an extension to the RCC8 set of relations that
was first used by SpatialML. The possible RCC8+ values include the RCC8 values Randell et al. (1992),
in addition to IN, a disjunction of TPP and NTPP.

Orientation links describe non-topological relationships. A SPATIAL SIGNAL with a DIRECTIONAL

semantic type triggers such a link. In contrast to qualitative spatial relations, OLINK relations are
built around a specific frame of reference type and a reference point. The referencePt value depends
on the frame type of the link. The ABSOLUTE frame type stipulates that the referencePt is a
cardinal direction. For INTRINSIC OLINKs, the referencePt is the same identifier that is given in
the ground attribute. For RELATIVE OLINKs, the identifier for the viewer should be provided as to the
referencePt. When the document type is IMAGE, all olinks are interpreted as relative FR relations
(unless otherwise stated), with the “VIEWER” as the referencePt.

ISOspace also allows one to identify the source and type of the text being annotated. This is done with
the document creation location (DCL) attribute. This is a distinguished location that serves
as the “narrative or reference location”. While useful for narratives and news articles, captions associated
with images pose a different problem, in that the document describes a representational artifact,4 such
as an image or a Google Street View scene; hence, the document type is distinguished as an IMAGE. To
account for this, (Pustejovsky and Yocum, 2014) introduce a new attribute, domain, which can take one
of two values: STRUCTURE and CONTENT. This allows the spatial relations to differentiate the kinds of
regions being identified in the caption. Furthermore, this means that the DCL can take two values: an
Image Structure Location, for reference to the image as an object; and an Image Content Location, which
is what the picture refers to (as in the default DCL for most texts).

4 The ImageML Model

In this section, we describe ImageML, a model for the semantic annotation of images. The conceptual
schema provides a introduction to the information covered, its elements, and the relations among them.

Figure 1: Conceptual Schema

4These are represented as phys obj • info complex types (dot objects), and inherit the properties of both type elements
Pustejovsky (1995).



This annotation model is an attempt at capturing the semantic of images representing events, in contrast
to images of landscapes and other non-dynamic representations. For this reason every annotated image
includes at least one element of type EVENT.

The tags EVENT, FIGURE, OFIGURE, SETTING and TIME aim at encoding most of the information
about the represented situation, both from a semantic perspective as well as from a formal one dealing
with the specific way the elements are portrayed. In our view, participants of events have certain charac-
teristics, such as their physical appearance or their type (an object, a person, etc.), are involved in events
that affect their posture (eg. sitting, standing), might have a gesture that viewers interpret as them having
an emotional attitude (which is valuable information for image descriptions), and are represented in a
limited number of ways with respect to the viewer (back view, full body, etc.). Relation tags serve three
purposes: first, capturing how a figure relates to an event and how the figure’s specific representation is
coupled with the characteristics of the motion involved in the event (if any); second, accounting for event
ambiguity; and third, recording frequent sub-events of a main event which involve two participants (eg.
holding, gazing, facing). We included the latter relations because they provide information that comple-
ments topological and spatial annotations without overcomplicating the annotation task. The modeling
of these latter events as relations responds to the need to capture them in numerous images.

4.1 IMAGE

This tag records the type of image (e.g. photo) and the camera angle. Going back to Bloehdorn et al.
(2005)’s knowledge base of prototypical instances, its attribute prototypical encodes whether an
image could be considered a canonical instance of the event it depicts, which is valuable information for
the event recognition task.

4.2 EVENT

The EVENT tag comes from TimeML (Pustejovsky et al., 2003; ISO/TC 37/SC 4/WG 2, 2012) and here
it captures the activity, event, or change of state that is represented in the image. Its attribute stage
encodes the phase of the event and the attribute type indicates whether the event is a sub-event of a
main event or the main event itself, in which case its sub-events are also listed as values for the attribute
subevents. Holding events that on first sight could have been thought of as EVENTs of type sub-event
are here captured by links (HOLDINGLINK) to facilitate the annotation process. In this way, in a picture
of someone taking notes holding a notebook and a pencil, only the event take notes would be recorded as
EVENT, in this case of type main and with two HOLDINGLINKs, one for the pen and one for the notebook.

4.3 FIGURE and OFIGURE

FIGUREs are those objects in an image that are participants of an event or are involved in a holding
relation. An object takes part in an event if it plays a semantic role (agent, theme, experiencer, etc.) in
it, which is captured by the ROLELINK relation. This point is worth mentioning in order to distinguish
FIGUREs from other objects that appear on the image but do not take part in any event, hence their
description is outside the scope of this specification.

The type of object is encoded in the type attribute, which takes its values from the ACE Entity
types5, from MPEG-7 semantic descriptor values (object and person), and from SpatialML (place). The
way the figure is portrayed with respect to the viewer in terms of a vertical axis (front, profile-lateral,
etc.) and its perceivable extent (whole, waist up, etc.) are recorded by the attributes view and extent
respectively. Other properties such as physical appearance, attitude, or their state (e.g., open, broken,
etc.) are also accounted for.

Figures not present in the picture but inferred by the reader when interpreting the image content
are captured by the OFIGURE tag. Common examples are images in which a figure interacts with the

5ACE: Automatic Content Extraction 2008 Evaluation Plan (ACE08), http://www.itl.nist.gov/iad/mig/
/tests/ace/2008/doc/.



viewer (waving the hand at the camera, for instance), or close-up shots where the agent is not visible. An
example of this is given below in Figure (2).

Figure 2: The OFIG is the agent of the event stir, the spoon is just the instrument.

4.4 SETTING and TIME

The SETTING tag aims at capturing information about the location of the events, any background el-
ements or any background figures taking part in an event. Its attribute figureID distinguishes the
overall setting of the events (e.g. a street) from specific objects in the image in which the event takes
place (reading on a bench on the street), which are FIGURES with a role. The scene attribute records
general aspects about the background of the image (e.g., outdoors and the attribute type encodes more
specific information (e.g., street). Similarly, the TIME tag, inspired by TimeML TIMEX tag, encodes the
time of the events and information deducible from the background.

4.5 ROLELINK and HOLDINGLINK

Kordjamshidi et al. (2010) introduce an annotation scheme similar in design to the task of semantic role
labeling and classifies the arguments of spatial expressions in terms of their spatial roles. In this spirit,
the tag ROLELINK addresses some spatial relations by indicating the source or goal of a movement, but
it manly encodes the semantic roles participants of events play, turning to the semantic roles used in
VerbNet (Schuler, 2005): agent, recipient, instrument, experiencer, etc. The HOLDINGLINK relation was
introduced in section 4.2 and stands for holding sub-events: it links a figure (agent) that holds a figure
(theme). Just as events, these relations have a manner attribute.

Figure 3: HOLDINGLINK expresses a sub-event hold, in which one figure holds another figure.

4.6 MOTIONLINK and DIRLINK

The tag MOTIONLINK is taken directly from ISOspace’s MOVELINK tag. It associates to the event that
triggers the motion, general information about the causer of the motion, the source and goal of it, and
the path and medium through which the motion occurs. The orientation of the motion according to
the different frames of reference is captured by the DIRLINK (direction link) relation, which combines
attributes from SpatialML RLINKs and ISOspace OLINKs. The idea is to record fine-grained information
about the orientation of the movement from the perspective of the object in motion, the causer of the
movement and the viewer.



Figure 4: The relations MOTIONLINK and DIRLINK encode motion and direction of the event.

4.7 FACELINK AND GAZELINK

The relations FACELINK and GAZELINK draw upon the idea that eye gaze is an important semantic cue
for understanding an image (Zitnick and Parikh, 2013). Facing and gazing could be thought of sub-
events, but are here captured as links in a way resembling the relation HOLDINGLINK introduced earlier.
Further, since a figure facing another figure does not imply that it is actually directing its gaze towards
it, the FACELINK tag accounts for the way two figures are oriented towards one another, whereas the
GAZINGLINK tag encodes eye-gaze relations between the two figures.

Figure 5: FACELINK captures facing relations between figures. A figure facing another may not be
looking at it. For this reason, eye-gaze is encoded with GAZELINK.

4.8 EXLINK

EXLINKs take as arguments at least two events and express the fact that they are mutually exclusive.
Some images might be ambiguous in the event they represent: a plane landing or taking off, someone
parking the car or maneuvering to leave the spot, closing or opening a book, etc. The idea behind
including both potential events is to allow for an association of the same low level features to both types
of events in the context of automatic event recognition as well as for a retrieval of the image if the user
searches for images of any of the two events.

5 Annotation Examples

To illustrate the descriptive nature of ImageML, let us consider an image that exploits many of the spec-
ification elements described above. This image is an instance of someone taking notes in a notebook.6

The associated annotation identifies the event as “note-taking”, along with the attributes of “holding a
pen”, the setting as being an interior location, the background being a bookshelf, and so on.

6Extracted from Google Image Search. Source: Flicker user Marco Arment (marcoarment).



Figure 6: Brainstorming.

<IMAGE id="i0" type="PHOTO" angle="NEUTRAL" prototypicalInstance="yes"/>
<FIGURE id="fig0" type="PERSON" view="FRONT" extent="SINGLE_PART"

singlePart="right hand and arm " state="" attitude="" physAspect="in a
green sweatshirt" comment="">a student</FIGURE>

<FIGURE id="fig1" type="OBJECT" view="PROFILE_LATERAL" extent="WHOLE"
singlePart="" state="" attitude="" physAspect="black and silver"
comment="">a pen</FIGURE>

<FIGURE id="fig2" type="OBJECT" view="3/4" extent="INSIDE" singlePart=""
state="open" attitude="" physAspect="spiral, square ruled" comment="">a
college notebook</FIGURE>

<EVENT id="e0" stage="DURING" type="MAIN_EVENT" subevent="e1" manner=""
holdingLink="hl0" representsConcept="" comment="">take notes </EVENT>

<EVENT id="e1" stage="DURING" type="SUB-EVENT" subevent="" manner=""
holdingLink="" representsConcept="" comment=""> sit</EVENT>

<HOLDINGLINK id="hl0" holderFigureID="fig0" heldFigureID="fig1"
manner="in his right hand"/>

<ROLELINK id="rl0" figureID="fig0" eventID="e1" role="AGENT"/>
<ROLELINK id="rl1" figureID="fig1" eventID="e1" role="INSTRUMENT"/>
<ROLELINK id="rl2" figureID="fig2" eventID="e1" role="PLACE"/>
<SETTING id="l0" figureID="" scene="INDOORS" type="FACILITY"

backgroundElements="bookshelves" backgroundFigures=""
geoInformation="">studying room</SETTING>

<TIME id="t0" type="OTHER"></TIME>

Rather than merely annotating all events in the image equally, it is important to note that there is a
topic event (“note-taking”), and that other salient eventualities, such the pen being held in a hand, etc.,
are captured as relational attributes to the main event. This would not be sufficient for a general event
description protocol, such as that promoted in ISO-TimeML, but for image descriptions, it appears par-
ticularly well-suited, at least in the context of images that we have so far studied. Obviously, this is an
issue that deserves further empirical study.

6 Conclusion

In this paper we have presented ImageML, a model for the semantic annotation of images which draws
largely upon ISOspace, as well as some aspects of Spatial Role Labeling and SpatialML, to capture
fine-grained information about the events depicted in an image, the motion involved (described from
different frames of reference), as well as information about the participants, their orientation, and the
relations among them. The setting and time of the situation are also accounted for. By its very design,
ImageML is a layered annotation, incorporating elements and values from the embedded specification



languages of ISOspace and ISO-TimeML.7

While not yet created, a database of images annotated with this information along with the spatial
configuration of objects should be of potential use to structured image retrieval, event detection and
recognition, and automatic image caption generation. We are currently pursuing the creation of such a
corpus.
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