
Proceedings of the 11th International Conference on Computational Semantics, pages 40–45,
London, UK, April 15-17 2015. c©2015 Association for Computational Linguistics

Multilingual Reliability and “Semantic” Structure of
Continuous Word Spaces
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Abstract
While continuous word vector representations enjoy increasing popularity, it is still poorly un-

derstood (i) how reliable they are for other languages than English, and (ii) to what extent they
encode deep semantic relatedness such as paradigmatic relations. This study presents experiments
with continuous word vectors for English and German, a morphologically rich language. For evalu-
ation, we use both published and newly created datasets of morpho-syntactic and semantic relations.
Our results show that (i) morphological complexity causes a drop in accuracy, and (ii) continuous
representations lack the ability to solve analogies of paradigmatic relations.

1 Introduction

Until recently, the majority of research on semantic spaces concentrated on vector spaces relying on
context counts (count vector spaces). However, increasing attention is being devoted to low-dimensional
continuous word vector representations. Unlike count vectors, these continuous vectors are the result of
supervised training of context-predicting models (predict vector spaces).1

Mikolov et al. (2013) reported that a predict vector space trained with a simplified neural language
model (cf. Bengio et al. (2003)) seemingly encodes syntactic and semantic properties, which can be
recovered directly from the space through linear translations, to solve analogies such as−−→

king−−−→man = −−−→queen−−−−−→woman.
Baroni et al. (2014) presented experiments where predict vectors outperform count vectors on several
semantic benchmarks involving semantic relatedness, word clustering, and selectional preferences.

Several open questions regarding predict vectors remain. In this paper, we focus on two shortcom-
ings of previous analyses. First, the analogies in the “syntactic” and “semantic” benchmark datasets by
Mikolov et al. (2013) in fact cover mostly morpho-syntactic relations – even in the semantic category.
Consequently, it is still unknown to what extent predict vector spaces encode deep semantic relatedness,
such as paradigmatic relations. Rei and Briscoe (2014) offered some insight by testing hypernymy rela-
tions through similarity; Melamud et al. (2014) investigated synonymy, hypernymy, and co-hyponymy
relations. However, no systematic evaluation of deep semantic analogies has been performed so far.

Second, it remains unclear whether comparable performance can be achieved for a wider range of re-
lations in morphologically rich languages, as most previous work on predict vectors worked with English
data. A notable exception is Zuanović et al. (2014), who achieved strong performance for superlative and
country-capital analogies in Croatian. Wolf et al. (2013) learned mappings of predict vectors between
English, Hebrew, and Arabic, but provided no deeper insight into the model’s capabilities on a direct
evaluation of semantic relations. Faruqui and Dyer (2014) trained predict vectors using two languages,
but evaluated only in English.

We present a systematic exploration of morpho-syntactic and semantic relatedness in English and
the morphologically richer language German. We show detailed results of the continuous bag-of-words
model (CBOW) by Mikolov et al. (2013), which we apply to equivalent morpho-syntactic tasks for both

1The terminology follows Baroni et al. (2014).
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languages. Pertaining to the question of deep semantic relatedness, we evaluate on existing benchmarks
on general semantic relatedness, and on newly created paradigmatic semantic analogies. To make the
models for the two languages as comparable as possible, they are trained on web corpora which were
obtained with the same crawling technique, and which we subsample to comparable size.

We present evidence that – while general semantic relatedness is captured well by predict models –
paradigmatic relations are problematic for count vector spaces. Moreover, our experiments on German
show that its morphological richness does indeed make the prediction of analogies more difficult.

2 Data

2.1 Morpho-Syntactic and Semantic Tasks

We evaluate a variety of analogy and semantic relatedness tasks, 23 for English and 21 for German. They
are in part taken from the literature and in part newly constructed.2

The Google semantic/syntactic analogy datasets (Google-Sem/Syn) were introduced in Mikolov
et al. (2013). The datasets contain analogy questions of the form A:B::C:D, meaning A is to B as C is to
D, where the fourth word (D) is unknown. We constructed German counterparts of the datasets through
manual translation and subsequent cross-checking by three human judges. We omitted the relation type
“adjective–adverb” for both languages, because it does not exist in German. The final task set contains
five Google-Sem and eight Google-Syn relation types with 18 552 analogy tasks per language.

The paradigmatic semantic relation dataset (Sem-Para) also contains analogy tasks. Here, the
paradigmatic relation between A and B is the same as between C and D. The dataset was constructed
from antonymy, synonymy, and hypernymy relation pairs collected by Lenci & Benotto for English
and by Scheible & Schulte im Walde for German, using the methodology described in Scheible and
Schulte im Walde (2014): Relying on a random selection of target nouns, verbs and adjectives from
WordNet/GermaNet – balanced for semantic class, degree of polysemy, and frequency according to
the WaCKy corpora (Baroni et al., 2009) –, antonyms, synonyms, and hypernyms were collected in an
experiment hosted on Amazon Mechanical Turk. We constructed analogy questions by selecting only
those target-response pairs that were submitted by at least four out of ten turkers. Then, we exhaustively
combined all pairs for each word class and relation type.3 The resulting English dataset contains 7 516
analogies; the German dataset contains 2 462 analogies.

In the same way, we created an analogy dataset with 10 000 unique analogy questions from the
hypernymy and meronymy relations in BLESS (Baroni and Lenci, 2011), by randomly picking semantic
relation pairs. BLESS is available only for English, but we included it in Sem-Para as it is a popular
semantic benchmark.

Overall, the Sem-Para dataset constitutes a deep semantic challenge, containing very specific, domain-
related and potentially low-frequent semantic details that are difficult to solve even for humans. For ex-
ample, the tasks include antonyms such as biblical:secular::deaf:hearing or screech:whisper::ink:erase;
hypernyms such as groove:dance::maze:puzzle; and synonyms such as skyline:horizon::rumor:gossip.

The general semantic dataset (Sem-Gen) does not require to solve analogies but to predict the degree
of semantic relatedness between word pairs. It contains three semantic benchmarks:

1. RG (Rubenstein and Goodenough, 1965) and its German equivalent Gur65 (Gurevych, 2005).

2. WordSim353 (Finkelstein et al., 2001) and its translation into German WordSim280 by Schmidt
et al. (2011): As Schmidt et al. did not re-rate the German relation pairs after translation (which
we considered necessary due to potential meaning shifts), we collected new ratings for the German
pairs from 10 subjects, applying the same conditions as the original WordSim353 collection task.
To ensure identical size for both languages, we reduced the English data to the common 280 pairs.

2The new datasets are available at http://www.ims.uni-stuttgart.de/data/analogies/.
3Regarding hypernymy and meronymy (see BLESS below), we restricted the pair combination such that the word to be

predicted is always the hypernym or holonym, respectively. The reason for this restriction is that there are too many correct
choices for the corresponding hyponyms and meronyms.
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Google-Sem Google-Syn Sem-Gen Sem-Para w/o BLESS TOEFL

CBOW SKIP BOW CBOW SKIP BOW CBOW SKIP BOW CBOW SKIP BOW CBOW SKIP BOW

EN W 68.8 71.8 39.5 81.9 80.5 57.9 77.9 77.8 77.8 19.3 16.4 15.6 96.2 96.2 72.2
EN L 68.3 71.8 40.3 47.1 47.4 29.3 80.5 78.6 66.4 18.4 15.9 15.8 90.0 87.5 66.2
DE W 42.4 45.9 27.3 48.4 47.1 31.0 75.6 73.3 58.9 14.7 14.4 14.8 69.0 68.3 54.4
DE L 43.5 45.9 28.9 31.8 31.5 23.7 73.3 75.7 64.7 15.1 13.8 14.9 69.4 68.5 55.8

Table 1: Results (ρ for Sem-Gen, accuracy for others) by task category across models.

3. 80 TOEFL (Test of English as a Foreign Language) questions by Landauer and Dumais (1997) for
English, and 426 questions from a similar collection by Mohammad et al. (2007) for German. Each
semantic similarity question is multiple choice, with four alternatives for a given stem. Unlike the
original English TOEFL data, the German dataset also contains phrases, which we disregarded.

2.2 Corpora

We obtain vectors using the COW web corpora ENCOW14 for English and DECOW12 for German
(Schäfer and Bildhauer, 2012). The corpora contain lemma and part-of-speech annotations. In addition,
we applied some basic pre-processing: we removed non-alphanumeric tokens and sentences with fewer
than four words, and we lowercased all tokens. In order to limit effects of corpus size, we subsampled the
English corpus to contain approximately the same number of tokens as the German corpus, 7.9 billion.

3 Experiments

3.1 Setup and Evaluation

Our setups vary model type (two predict models and one count model), language (English and German),
and word forms vs. lemmas in the training data – leading to a total of 3×2×2 models. Our predict models
are the standard CBOW and SKIP-gram models, trained with the word2vec toolkit (Mikolov et al.,
2013). We use negative sampling with 15 negative samples, 400 dimensions, a symmetrical window of
size 2, subsampling with p = 10−5, and a frequency threshold of 50 to filter out rare words.

Our count model is a standard bag-of-words model with positive point-wise mutual information
weighting and dimensionality reduction through singular value decomposition. The dimensionality and
the window size were set identical to the predict vectors.

We solve analogy tasks with the 3COSMUL method (Levy and Goldberg, 2014), and similarity tasks
with cosine similarity. For the Google, TOEFL, and Sem-Para tasks, we report accuracy; for RG and
WordSim we report Spearman’s rank-order correlation coefficient ρ.

3.2 Results

Table 1 compares the word-based (W) and lemma-based (L) results of the English (EN) and the German
(DE) predict vs. count models. We first confirm previous insight (Baroni et al., 2014) that the predict
models (CBOW; SKIP) in most cases outperform the count models (BOW). Second, we also confirm that
the SKIP-gram model outperforms CBOW only on Google-Sem (Mikolov et al., 2013). Third, we find
that lemmatized models generally perform slightly better on semantic tasks, whereas full word forms are
necessary for morpho-syntactic tasks. Table 2 presents a breakdown by task for the overall best model
(CBOW). Based on this, we will now discuss our two main questions.

(i) Morphological richness of target language: For the Google-Sem/Syn analogies, the level of
performance is generally higher in English than in German. The only exceptions are the tasks nationality-
adjective (L), and plural-verbs (both W+L). Our experiments demonstrate that, compared to English, the
Google analogies are more difficult to solve for the morphologically richer language German. Using full
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Google-Sem Google-Syn Sem-Para Sem-Gen
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EN W 94.0 74.6 19.5 67.5 83.3 50.2 85.5 95.4 94.8 92.4 80.9 77.6 68.6 11.6 1.3 0.4 4.3 0.8 1.0 0.0 82.3 73.6 96.2
EN L 92.6 73.1 21.4 70.0 71.9 49.5 84.8 56.0 46.3 67.3 15.8 39.1 6.6 12.5 3.8 0.0 7.3 1.3 1.9 0.0 84.3 76.7 90.0
DE W 82.0 55.8 14.9 17.7 60.5 23.1 40.3 69.8 37.9 73.8 83.9 15.4 53.5 4.2 0.0 5.0 5.9 1.1 – – 75.1 76.1 69.0
DE L 81.8 58.8 17.5 17.5 60.7 21.4 85.1 14.8 7.9 63.0 37.7 17.7 1.3 5.3 0.3 3.6 8.6 1.1 – – 79.1 76.7 69.4

Table 2: Results by task for the English and German CBOW models.

word forms, these differences are consequently the strongest for the Google-Syn morpho-syntactic tasks4

opposite, comparative, superlative, plural-nouns, present-participle, and past-tense, where considerably
more word forms per lemma exist in German than in English. As a consequence, the German search
space is larger, and it becomes more difficult to predict the correct form. For example, while English
only uses three adjective word forms per lemma, i.e., positive, comparative and superlative (e.g., fast,
faster, fastest), German inflects adjectives for case, gender and number (e.g., schneller(e|en|er|es) are
all valid translations of faster). The results for nationality-adjective confirm this insight, because the
lemma-based (L) German data with a reduced search space (i.e., only offering one adjective lemma
instead of the various inflected forms) clearly improves over the word-based German version (40.3%→
85.1%). Regarding plural-verbs, we assume that the German task is not more difficult than the English
task, because even though German verbs are also inflected, written language predominantly uses two
verb forms (third person singular and plural), as in English.

(ii) Deep semantic tasks: First, we contrast the Google tasks with varying morpho-syntactic and light
semantic content against the semantic relation tasks Sem-Gen and the deep semantic tasks Sem-Para. We
observe that performance across models and languages is still high when addressing semantic relatedness
on a coarse-grained level (Sem-Gen): This is true when the number of related pairs is comparably low,
and the relation types differ more strongly (RG and WordSim), or when the search space is very restricted
(TOEFL, which is a multiple choice task). However, accuracy is dramatically low when deep semantic
knowledge is required, as in Sem-Para. Only adj-ant and noun-syn achieve accuracy scores of over 5.0%
for both languages. In most cases, lemmatization slightly helps by reducing the search space, because
distinguishing between word forms is not required by the tasks. Yet, the gain is lower than we had
expected due to lemmatization errors on the web data, which led to a considerable set of full inflected
forms still being part of the search spaces.

Data analysis reveals the following major error types in the Sem-Para task category: Next to a minor-
ity of clearly wrong solutions, the CBOW model suggested wrong words/lemmas that are nevertheless
related to the requested solution, either morphologically or semantically. An example for a wrong but
morphologically similar solution is Freiheit (freedom) instead of gefangen (caught) as the prediction
for unfruchtbar:fruchtbar::frei:? (sterile:fertile::free:?). Examples for wrong but semantically simi-
lar solutions are the hyponym Holzstuhl (wooden chair) instead of the hypernym Möbel (furniture) for
Atomwaffe:Waffe::Stuhl:? (atomic weapon:weapon::chair:?); the synonym erhöhen (increase) instead
of the antonym abfallen (decrease) for verbieten:erlauben::ansteigen:? (forbid:allow::increase:?); and
the synonym undetermined instead of the antonym known for manual:automatic::unknown:?. Overall,
wrong semantic suggestions are most often synonyms (instead of hypernyms or antonyms).

Morphological variation is again a more serious problem for the German data, not only regarding
inflection but also regarding composition: many wrong solutions are compounds suggested for their
heads (as in the Stuhl–Holzstuhl example above). Further examples of this type of error are Cayenne-
pfeffer (cayenne pepper) instead of Salz (salt) as the antonym of Pfeffer (pepper); and Lufttemperatur
(air temperature) instead of Wärme (warmth) as the synonym of Temperatur (temperature).

4The performance gap on the Google-Sem tasks is smaller. An exception is city-in-state, where this gap may be attributed
to better coverage of American cities in English.
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CBOW
EN W 25.5 7.7 3.9 29.1 7.9 4.6 0.6
EN L 23.6 9.1 4.3 26.8 9.0 5.6 0.6
DE W 14.4 4.2 17.5 27.3 4.9 – –
DE L 15.1 7.1 16.1 27.1 6.2 – –

SKIP
EN W 25.7 7.2 3.4 21.6 5.0 4.0 0.6
EN L 23.7 6.7 3.2 21.9 5.7 5.4 0.8
DE W 15.2 2.9 17.1 24.2 5.8 – –
DE L 15.5 2.9 16.8 22.3 3.9 – –

BOW
EN W 24.9 7.1 6.1 21.0 18.6 6.1 1.9
EN L 16.4 6.4 6.7 20.3 19.6 8.5 2.4
DE W 6.3 7.8 28.3 26.8 4.9 – –
DE L 8.5 5.8 22.8 31.0 6.8 – –

Table 3: Sem-Para results across models, for recall at ten.

Table 3 compares the Sem-Para results across models, now relying on recall of the target being in the
top 10 (Rec10). We consider this measure a fairer choice than accuracy because (a) the Sem-Para dataset
contains considerably more difficult tasks, and (b) the higher proportions allow a better comparison
across conditions. Bold font indicates the best results per column and language. Similar to before, the
best results are reached for adj-ant and noun-syn, as well as for noun-ant, with Rec10 between 25.7% and
31.0%. Performance on noun-hyp reaches > 15% in only two cases, and the verb-ant and BLESS results
are always < 10.0% for both languages and W/L conditions. Furthermore, there is no clear tendency for
one of the languages or W vs. L to outperform the other. It is clear, however, that the superiority of the
CBOW model in comparison to BOW vanished: in most cases, the BOW models outperform the CBOW
(and SKIP) models, most impressively for noun-ant and noun-hyp.

4 Conclusion
We presented a systematic cross-lingual investigation of predict vectors on morpho-syntactic and seman-
tic tasks. First, we showed that their overall performance in German, a morphologically richer language,
is lower than in English. Second, we found that none of the vector spaces encodes deep semantic infor-
mation reliably: In both languages, they lack the ability to solve analogies of paradigmatic relations.
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