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Abstract

We present a cross-lingual method for determining NP structures. More specifically, we try to
determine whether the semantics of tripartite noun compounds in context requires a left or right
branching interpretation. The system exploits the difference in word position between languages as
found in parallel corpora. We achieve a bracketing accuracy of 94.6%, significantly outperforming all
systems in comparison and comparable to human performance. Our system generates large amounts
of high-quality bracketed NPs in a multilingual context that can be used to train supervised learners.

1 Introduction
k-partite noun compounds, i.e., compositions of k bare common nouns that function as one unit, (kNCs),
such as air traffic control system, usually have an implicit structure that reflects semantics. While a LEFT-
branching [world banana] market is very unlikely, for luxury cattle truck, both structures make sense
and context is necessary for disambiguation: [luxury cattle] truck is a truck for luxury cattle whereas
luxury [cattle truck] is a luxury truck for (any) cattle. Therefore, a proper structural analysis is a crucial
part of noun compound interpretation and of fundamental importance for many tasks in natural language
processing such as machine translation. The correct French translation of luxury cattle truck depends
on the internal structure. While [luxury cattle] truck is translated as camion pour bétail de luxe, the
preferred translation for luxury [cattle truck] is camion de luxe pour bétail.

Previous work on noun compound bracketing has shown that supervised beats unsupervised. The
latter approaches use N-gram statistics or lexical patterns (Lauer, 1995; Nakov and Hearst, 2005; Barrière
and Ménard, 2014), web counts (Lapata and Keller, 2004) or semantic relations (Kim and Baldwin, 2013)
and evaluate on carefully selected evaluation data from encyclopedia (Lauer, 1995; Barrière and Ménard,
2014) or from general newspaper text (Kim and Baldwin, 2013). Vadas and Curran (2007a,b) manually
annotated the Penn Treebank and showed that they improve over unsupervised results by a large margin.
Pitler et al. (2010) used the data from Vadas and Curran (2007a) for a parser applicable on base noun
phrases (NPs) of any length including coordinations. Barker (1998) presents a bracketing method for
k-partite NPs that reduces the task to three-word bracketings within a sliding window. One advantage of
supervised approaches for this task is that kNCs are labeled in context so contextual features can be used
in the learning framework. These are especially useful when dealing with ambiguous kNCs.

The need for annotated data is a drawback of supervised approaches. Manual annotations are costly
and time-consuming. To circumvent this need for annotated data, previous work has used cross-lingual
supervision based on parallel corpora. Bergsma et al. (2011) made use of small amounts of annotated
data on the target side and complement this with bilingual features from unlabeled bitext in a co-trained
classifier for coordination disambiguation in complex NPs. Previous work on using cross-lingual data
for the analysis of multi-word expressions (MWEs) of different types include Busa and Johnston (1996);
Girju (2007); Sinha (2009); Tsvetkov and Wintner (2010); Ziering et al. (2013).
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Ziering and Van der Plas (2014) propose an approach that refrains from using any human annota-
tion. They use the fact, that languages differ in their preference for open or closed compounding (i.e.,
multiword vs. one-word compounds), for inducing the English bracketing of 3NCs. English open 3NCs
like human rights abuses can be translated to partially closed phrases as in German Verletzungen der
Menschenrechte, (abuses of human rights), from which we can induce the LEFT-branching structure. Al-
though this approach achieves a solid accuracy, a crucial limitation is coverage, because restricting to six
paraphrasing patterns ignores many other predictive cases. Moreover, the system needs part of speech
(PoS) tags and splitting information for determining 2NCs and is therefore rather language-dependent.

In this paper, we present a precise, high-coverage and knowledge-lean method for bracketing kNCs
(for k ≥ 3) occurring in parallel data. Our method uses the distances of words that are aligned to
kNC components in parallel languages. For example, the 3NC human rights violations can be bracketed
using the positions of aligned words in the Italian fragment . . . che le violazioni gravi e sistematiche dei
diritti umani . . . . The fact, that the alignment of the third noun, violations (violazioni), is separated
from the rest, points us in the direction of LEFT-branching. Using less restricted forms of cross-lingual
supervision, we achieve a much higher coverage than Ziering and Van der Plas (2014). Furthermore,
our results are more accurate. In contrast to previous unsupervised methods, our system is applicable in
both token- and type-based modes. Token-based bracketing is context-dependent and allows for a better
treatment of structural ambiguity (as in luxury cattle truck). We generate large amounts of high-quality
bracketed kNCs in a multilingual context that can be used to train supervised learners.

2 Aligned Word Distance Bracketing
The aligned word distance bracketing (AWDB) is inspired by Behaghel’s First Law saying that elements
which belong close together intellectually will also be placed close together (Behaghel, 1909).

1: c1, . . . , cn⇐ N1, . . . , Nk

2: AWi⇐ set of content words ci aligns to
3: while |{c1, . . . , cn}| > 1 do
4: (cm, cm+1)⇐ c-pair with minimal AWD
5: merge cm and cm+1 to c[m, m+1]

6: AW[m, m+1] = AWm ∪AWm+1

7: end while
Figure 1: AWDB algorithm for kNCs

For each language l, we apply the AWDB algorithm on a kNC as shown in Figure 1: we start bottom-
up with one constituent per noun. For each constituent ci, we create a set of content words1 ci aligns to,
AWi. We merge the two consecutive constituents cm and cm+1 with the smallest aligned word distance
(AWD) based on the minimum distance from all words in AWm to all words in AWm+1:

AWD(cm, cm+1) = min
x∈AWm,y∈AWm+1

|pos(x)− pos(y)|

where pos(α) is the position of a word α in a sentence. In the case of (cm, cm+1) being aligned to a
common closed compound, AWD(cm, cm+1) is zero. If the smallest AWD is not unique but the related
constituents do not overlap (e.g., (c1,c2) and (c3,c4) aligning to two different closed compounds) we
merge both constituent pairs in one iteration. If they overlap (e.g., (c1,c2) and (c2,c3) aligning to a com-
mon closed compound), no bracketing structure can be derived from the word positions in l. Similarly,
if there is an empty set AWe, i.e., there is no alignment from ce to a content word in l, AWDB cannot
bracket the kNC using the translation to l. If no structure can be derived from any aligned language,
AWDB refuses to answer.

For example, the 4NC air transport safety organization is aligned to four words in the French frag-
ment Nous devons mettre en place cette organisation7 européenne chargée de la sécurité12 du transport14
aérien15 qui . . . (We need to establish this European organization responsible for the safety of air trans-
port that . . . ). The aligned word sets are: AW1 = {aérien}, AW2 = {transport}, AW3 = {sécurité} and

1These are words tagged as noun, adjective or verb. They can be identified with corpus frequency to remain knowledge-lean.
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AW4 = {organisation}. c1 and c2 have the smallest AWD and thus are merged. In the next iteration, the
smallest AWD is between c[1, 2] and c3. As last step, we merge c[[1, 2], 3] and c4. The resulting constituent
corresponds to the 4NC structure [[[air transport] safety] organization].

To determine the final bracketing for a given kNC, we use the majority vote of all structures derived
from all aligned languages. In the case of a tie, AWDB does not produce a final bracketing. Although
this decision leads to lower coverage, it enables us to measure the pure impact of the cross-lingual word
distance feature. For practical purposes, an additional back-off model is put in place. In order to mitigate
word alignment problems and data sparseness, we additionaly bracket kNCs in a type-based fashion, i.e.,
we collect all kNC structures of a kNC type from various contexts.

3 Experiments
Tools and data. While AWDB is designed for bracketing NPs of any length, we first experiment with
bracketing 3NCs, the largest class of 3+NCs (93.8% on the basic dataset of Ziering and Van der Plas
(2014)), for which bracketing is a binary classification (i.e., LEFT or RIGHT). For bracketing longer
NCs we often have to make do with partial information from a language, instead of a full structure. In
future work, we plan to investigate methods to combine these partial results. Moreover, in contrast to
previous work (e.g., Vadas and Curran (2007b)), we take only common nouns as components into account
rather than named entities. We consider the task of bracketing 3NCs composed of common nouns more
ambitious, because named entities often form a single concept that is easy to spot, e.g., Apple II owners.
Although AWDB can also process compounds including adjectives (e.g., active inclusion policy aligned
to the Dutch beleid voor actieve insluiting (policy for active inclusion)), for a direct comparison with the
system of Ziering and Van der Plas (2014), that analyses 3NCs, we restrict ourselves to noun sequences.

We use the Europarl2 compound database3 developed by Ziering and Van der Plas (2014). This
database has been compiled from the OPUS4 corpus (Tiedemann, 2012) and comprises ten languages:
Danish, Dutch, English, French, German, Greek, Italian, Portuguese, Spanish and Swedish. We use the
initial version (basic dataset), that contains English word sequences that conform PoS chunks and their
alignments. We select English word sequences whose PoS pattern conforms three nouns.

Extraction errors are a problem, since many adjectives have been tagged as nouns and some 3NCs
occur as incomplete fragments. For increasing the effectiveness of human annotation, we developed a
high-confidence noun filter Pnoun(word) = P (noun | word). It is trained on the English Wikipedia5

tagged by TreeTagger (Schmid, 1995). We inspect all 3NCs in the context of one token to the left and
right, w0{N1N2N3}w4. If Pnoun(Ni) < θ or Pnoun(wj) ≥ θ, we remove the 3NC from our dataset. We
inspected a subset of all 3NCs in the database and estimated the best filter quality to be with θ = 0.04.
This threshold discards increasing land abandonment but keeps human rights abuse. Our final dataset
contains 14,941 tokens and 8824 types.

Systems in comparison. We compare AWDB with the bracketing approach of Ziering and Van der
Plas (2014). For both systems, we use the majority vote across all nine aligned languages, in a token- and
type-based version. We implemented an unsupervised method based on statistics on bi-grams extracted
from the English part of the Europarl corpus.6 As scorer, we use the Chi squared (χ2) measure, which
worked best in previous work (Nakov and Hearst, 2005). We consider both the adjacency (i.e., (N1, N2)
vs. (N2, N3), (Marcus, 1980)) and the dependency (i.e., (N1, N2) vs. (N1, N3), (Lauer, 1995)) model.
We created a back-off model for the bracketing system of Ziering and Van der Plas (2014) and for AWDB
that falls back to using χ2 if no bracketing structure can be derived (system→ χ2). Finally, we compare
with a baseline, that always predicts the majority class: LEFT.

Human annotation. We observed that there is only a very small overlap between test sets of previous
work on NP bracketing and the Europarl database. The test set used by Ziering and Van der Plas (2014)
is very small and the labeling is less fine-grained. Thus, we decided to create our own test set.

2statmt.org/europarl
3ims.uni-stuttgart.de/data/NCDatabase.html
4opus.lingfil.uu.se
5en.wikipedia.org
6For a fair comparison, we leave systems that have access to external knowledge, such as web search engines, aside.
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A trained independent annotator classified a set of 1100 tokens in context with one of the following
labels: LEFT, RIGHT, EXTRACTION (for extraction errors that survived the high-confidence noun filter
Pnoun(word)), UNDECIDED (for 3NCs that cannot be disambiguated within the one-sentence context)
and SEMANTIC INDETERMINATE (for 3NCs for which LEFT and RIGHT have the same meaning such as
book price fixing (i.e., price fixing for books is equivalent to fixing of the book price)). We consider the
full dataset to compare the coverage of the systems in comparison. For the accuracy figures, in order to
keep annotation efforts small, we asked evaluators to annotate just those tokens that our system provides
an answer to, because tokens that our system has no answer to will not be evaluated in the comparative
evaluation on accuracy anyhow. Two additional trained independent annotators each classified one half of
the dataset for checking inter-annotator agreement. For the classes LEFT/RIGHT (308 tokens), we achieve
an agreement rate of 90.3% and κ = 0.717 (Cohen, 1960), which means good agreement (Landis and
Koch, 1977). We use the LEFT/RIGHT consensus of the 3NC tokens as final test set (278 tokens).

Evaluation Measure. We measure accuracy (Acc Ω) for a set of 3NC tokens, Ω, as correct LEFT/RIGHT

labels divided by all LEFT/RIGHT labels. Coverage is measured as LEFT/RIGHT labels divided by all 3NC
tokens in the full dataset. We refer to the harmonic mean of Acc Ω and Coverage as harmonic(Ω).

4 Results and Discussion
System Coverage
AWDBtoken / AWDBtype 87.9% / 91.2%
AWDBtype→ χ2 100%
χ2 100%
Zier.v.d.Plas14token / Zier.v.d.Plas14type 29.9% / 48.1%
Zier.v.d.Plas14type→ χ2 100%
LEFT baseline 100%

Table 1: Evaluation results on coverage

As it turned out that the adjacency model outperforms the dependency model, we only report results
for the first. Table 1 presents the coverage of each system, based on the full dataset. Our first result is
that type-based cross-lingual bracketing outperforms token-based and achieves up to 91.2% in coverage.
As expected, the system of Ziering and Van der Plas (2014) does not cover more than 48.1%. The χ2

method and the back-off models cover all 3NCs in our dataset. The fact that AWDBtype misses 8.8% of
the dataset is mainly due to equal distances between aligned words (e.g., crisis resolution mechanism is
only aligned to closed compounds, such as the Swedish krislösningsmekanism or to nouns separated by
one preposition, such as the Spanish mecanismo de resolución de crisis). In future work, we will add
more languages in the hope to find more variation and thus get an even higher coverage.

System Acccom harmonic(com) com

AWDBtoken / AWDBtype 94.4% / 94.4% 91.0% / 92.8% 270
Zier.v.d.Plas14token / Zier.v.d.Plas14type 87.8% / 87.2% 44.6% / 62.0% 180
AWDBtype 94.6%† 92.9%†

184
Zier.v.d.Plas14type 86.4% 61.8%
AWDBtype 94.1%† 92.6%

273
χ2 87.9% 93.6%
AWDBtype→ χ2 93.5%† 96.6%†

278
Zier.v.d.Plas14type→ χ2 86.7% 92.9%
χ2 87.4% 93.3%
LEFT baseline 80.9% 89.4%

Table 2: Direct comparison on common test sets; † = significantly better than the systems in comparison

Table 2 directly compares the systems on common subsets (com), i.e., on 3NCs for which all sys-
tems in the set provide a result. The main reason why cross-lingual systems make bracketing errors is
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the quality of automatic word alignment. AWDB outperforms Ziering and Van der Plas (2014) signif-
icantly7. This can be explained with the flexible structure of AWDB, which can exploit more data and
is thus more robust to word alignment errors. AWDB significantly outperforms χ2 in accuracy but is
inferior in harmonic(com). The last four lines of Table 2 show all systems with full coverage. AWDB’s
back-off model achieves the best harmonic(com) with 96.6% and an accuracy comparable to human
performance. For AWDB, types and tokens show the same accuracy. The harmonic mean numbers for
the system of Ziering and Van der Plas (2014) illustrate that coverage gain of types outweighs a higher
accuracy of tokens. Our intuition that token-based approaches are superior in accuracy is hardly reflected
in the present results. We believe that this is due to the domain-specificity of Europarl. There are only
few instances, where the bracketing of a 3NC type differs from token to token. We expect to see a larger
difference for general domain parallel corpora.

Language Acccom Coverage harmonic(com) com

Romance 86.6% 86.2% 86.4%
201

Germanic 94.0% 68.0% 78.9%

Table 3: Evaluation of language families for AWDBtype

Table 3 shows the contribution of the Romance (i.e., French, Italian, Portuguese and Spanish) and
Germanic (i.e., Danish, Dutch, German and Swedish) language families for AWDBtype. Romance lan-
guages have a higher coverage than Germanic languages. This is because many 3NCs are aligned to a
closed Germanic compound, which gives no information on the internal structure. Since Romance lan-
guages use open compounds, coverage is higher. On the other hand, Romance languages are worse in
accuracy. One reason for this is that they can also produce constructions that violate Behaghel (1909)’s
First Law, e.g., state health service can be translated to the Portuguese serviços de saúde estatais (lit.:
[service of health] stateadj). While Ziering and Van der Plas (2014) excluded the pattern NOUN + PREP

+ NOUN + ADJ, we observed that excluding results with this pattern worsens the overall performance
of AWDB. Test set instances with this pattern in any Romance language have significantly8 more LEFT

labels than the total test set. Furthermore, many instances of these cases can be disambiguated using
morphosyntactic information such as number, e.g., world fishing quotas aligned to the French quotas de
pêche mondiaux (quotaspl of fishingsg worldadj,pl).

As a result, we have 13,622 3NC tokens in context annotated with bracketing structures that are
comparable to human annotation. The manual annotation by Vadas and Curran (2007a) resulted in 5582
three-word NPs, that were successfully used to train supervised learners.

5 Conclusion
In this paper, we presented a method for the automatic bracketing of k-partite noun compounds by
using the surface structure (i.e., various word positions) in parallel translations as supervision. In an
experiment, we extracted 3NCs from a noun compound database comprising ten languages derived from
a parallel corpus. Our bracketing system outperforms all systems in comparison with an accuracy of
94.6% and is comparable with human performance.

In future work, we will investigate how to combine partial bracketing results from different languages
and how to make the approach independent from parallel data. Along with this paper, we publish9 the
processed dataset and our test set, which can be used as training and test data for supervised learners.
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