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Abstract

Motivated by theories of language development we investigate the contribution of affect to lexical se-
mantics in the context of distributional semantic models (DSMs). The relationship between semantic
and affective spaces is computationally modeled for the task of semantic similarity computation be-
tween words. It is shown that affective spaces contain salient information for lexical semantic tasks.
We further investigate specific semantic relationships where affective information plays a prominent
role. The relations between semantic similarity and opposition are studied in the framework of a bi-
nary classification problem applied for the discriminationof synonyms and antonyms. For the case of
antonyms, the use of affective features results in 33% relative improvement in classification accuracy
compared to the use of semantic features.

1 Introduction

Mainstream distributional semantic models (DSMs) rely solely on linguistic data, being ungrounded to
the real world, i.e., features from other modalities and experiential information that are related to the
acquisition of semantic knowledge are ignored. Motivated by findings from the literature of language
development, according to which language acquisition is (also) grounded on communication episodes
where partners exchange feelings (Tomasello et al., 2005),we consider emotion as part of lexical se-
mantics. We argue that emotion conveys salient information, relaxing the view of emotion as “pathos”
(Salovey and Mayer, 1990) that was ostracized by (traditional) models of semantics/logic.

In this paper, the affective content of words is investigated within a network-based framework re-
garding its contribution to lexical semantics tasks. This framework is motivated by cognitive models that
rely on the distributed representation of semantic attributes (features) (Rogers and McClelland, 2004).
Given a stimulus (e.g., a word), local areas (sub-spaces) are activated, triggering a number of attributes
that are (semantically) related with the stimulus. The activation of attributes can be explained in the
context of semantic priming according to which the presenceof a word facilitates the cognitive pro-
cessing of another word (McNamara, 2005). Affective priming constitutes the emotional analogue of
semantic priming (Ferré and Sánchez-Casas, 2014). The key machinery of the used network is a two-tier
system. The first layer constitutes a local representation scheme for encoding the semantics of target
words simulating the aforementioned activation models. The activation models enable the definition of
various similarity metrics in the second layer. In this work, we investigate the creation of activation
models using both lexical and affective features, which areused for the computation of word semantic
similarity. To the best of our knowledge this is the first computational model investigating the role of
affect in semantics.
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2 Related Work

Semantic similarity is the building block for numerous applications of natural language processing, such
as affective text analysis (Malandrakis et al., 2013). There has been much research interest on devis-
ing data-driven approaches for estimating semantic similarity between words. Distributional semantic
models (DSMs) (Baroni and Lenci, 2010) are based on the distributional hypothesis of meaning (Harris,
1954) assuming that semantic similarity between words is a function of the overlap of their linguistic con-
texts. DSMs can be categorized into unstructured that employ a bag-of-words model and structured that
employ syntactic relationships between words (Baroni and Lenci, 2010). DSMs are typically constructed
from co-occurrence statistics of word tuples that are extracted on existing corpora or on corpora specifi-
cally harvested from the web. In (Iosif and Potamianos, 2015), a language-agnostic DSM was proposed
as a two-tier system motivated by cognitive considerationssuch as network activation and priming.. The
first layer, encodes the semantics of words via the creation of lexical neighborhoods. In the second layer,
similarity metrics are defined on these semantic neighborhoods. The extension of DSMs for representing
the compositional aspects of lexical semantics constitutes an active research area (Baroni et al., 2014).

Analysis of text to estimate affect or sentiment is a relatively recent research topic that has attracted
great interest, as reflected by a series of shared evaluationtasks, e.g., analysis of tweets (Nakov et al.,
2013). Relevant applications deal with numerous domains such as news stories (Lloyd et al., 2005) and
product reviews (Hu and Liu, 2004). Affective analysis is also useful for other application domains such
as dialogue systems (Lee and Narayanan, 2005). Several resources enable the development of these
computational models, ranging from flat lexica (e.g., General Inquirer (Stone et al., 1966) and Affective
norms for English Words (Bradley and Lang, 1999)) to large lexical networks (e.g., SentiWordNet (Esuli
and Sebastiani, 2006) and WordNet Affect (Strapparava and Valitutti, 2004)). Text can be analyzed for
affect at different levels of granularity: from single words to entire sentences. In (Turney and Littman,
2003), the affective ratings of unknown words were predicted using the affective ratings for a small set
of words (seeds) and the semantic relatedness between the unknown and the seed words. An example
of sentence-level approach was proposed in (Malandrakis etal., 2013) applying techniques from n-gram
language modeling.

3 Lexical Features and Metrics of Semantic Similarity

Co-occurrence-based (CC). The underlying assumption of co-occurrence-based metricsis that the co-
existence of words in a specified contextual environment indicates semantic relatedness. In this work,
we employ a widely-used co-occurrence-based metric, namely, Dice coefficientD (co-occurrence is
considered at the sentence level).
Context-based (CT). The fundamental assumption behind context-based metrics is thatsimilarity of
context implies similarity of meaning(Harris, 1954). A contextual window of size2H +1 words is
centered on the word of interestwi and lexical features are extracted. For every instance ofwi in the
corpus theH words left and right ofwi formulate a feature vectorxi. For a given value ofH the context-
based semantic similarity between two words,wi andwj , is computed as the cosine of their feature
vectors:QH(wi, wj) = xi.xj

||xi|| ||xj || . The elements of feature vectors can be weighted according to various
schemes, while, here we use a binary scheme.

4 Affective Features and Metric of Affective Similarity

A word w is characterized regarding its affective content in a continuous (within the[−1, 1] interval)
space consisting of three dimensions (affective features), namely, valence (v), arousal (a), and domi-
nance (d). For each dimension, the affective content ofw is estimated as a linear combination of its’
semantic similarities to a set ofK seed words and the corresponding affective ratings of seeds(for the
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corresponding dimension), as follows (Malandrakis et al.,2013).

û(w) = λ0 +
K∑

i=1

λi u(ti) S(ti, w), (1)

wheret1...tK are the seed words,u(ti) is the affective rating for seed wordti with u denoting one of the
aforementioned dimensions, i.e.,v, a, or d. λi is a trainable weight corresponding to seedti. S(ti, w)
stands for a metric of semantic similarity (see Section 3) between ti and w. The affective distance
between two words,wi andwj , can be computed as the Euclidean distance over the three-dimensional
space, which can be transformed into similarity.

5 Semantic and Affective Networks

In this section, we summarize the main ideas of DSMs that wereproposed in (Iosif and Potamianos,
2015) for building semantic networks, which are extended here for the creation of affective networks.
An overview of the semantic and affective networks is presented in Fig. 1. Each network type consists

Figure 1: Overview of semantic and affective networks. Eachnetwork consists of two layers, namely,
activation and similarity.

of two layers, namely, activation and similarity layer. Fora target word,wi, the first layer is used for the
activation of a set of other words that are semantically/affectively related with the target. The second layer
is used for the computation of semantic/affective similarity between two words for which the respective
activation layers have been computed. Regardless of the network type (i.e., semantic or affective), the
network is defined as an undirected (under a symmetric similarity metric) graphF = (V,E) whose the
set of verticesV are all words in a lexiconO, and the set of edgesE contains the links between the
vertices. The links (edges) between words in the network aredetermined and weighted according to the
pairwise (semantic of affective) similarity of the vertices. For each word (target word) that is included in
the lexicon,wi ∈ O, we consider a sub-graph ofF , Fi = (Ni, Ei), where the set of verticesNi includes
in totaln members ofO, which are linked withwi via edgesEi.

5.1 Layer 1: Activation Models

Semantic Activation Model. The computation of the semantic activation model for a target word wi is
motivated semantic priming (McNamara, 2005). The model canbe represented as aFi sub-graph, which
is also referred to as the semantic neighborhood ofwi. The members ofNi (neighbors ofwi) are selected
according to a semantic similarity metric (in this work,D or QH defined in Section 3) with respect to
wi, i.e., then most similar words towi are selected. The semantic neighborhood of targetwi with sizen
is denoted asLi(n).
Affective Activation Model. The computation of the affective activation model for a target wordwi is
motivated affective priming (Ferré and Sánchez-Casas, 2014). The model can be represented as aFi sub-
graph that denotes the affective neighborhood ofwi. The members ofNi (neighbors ofwi) are selected
according to an affective similarity metric (e.g., as defined in Section 4) with respect towi, i.e., then

164



most similar words towi are selected. The affective neighborhood of targetwi with sizen is denoted as
Ai(n).

5.2 Layer 2: Similarity Model

Here, we describe two network-based similarity metrics proposed in (Iosif and Potamianos, 2015) for
computing the similarity between two (target) wordswi andwj . The metrics are defined on top of the
activations models (semantic of affective) ofwi andwj that were computed in the previous layer of the
network1.

(a) (b)

Figure 2: Example of network similarity metrics based on theactivation models of two target words. The
targets, “forest” and “fruit”, are depicted along with their neighbors (Layer 1):{pine, tree, . . . , land} and
{juice, pie, . . . , jam}, respectively. Arcs represent the similarities between targets and neighbors. The
similarity between “forest” and “fruit” (Layer 2) is computed according to (a) maximum similarity of
neighborhoods, and (b) correlation of neighborhood similarities.

Maximum Similarity of Neighborhoods. This metric is based on the hypothesis that the similarity of
two words,wi andwj, can be estimated bythe maximum similarity of their respective sets of neighbors,
defined as follows:

Mn(wi, wj) = max{αij , αji}, (2)

where
αij = max

x ∈ Nj

S(wi, x), αji = max
y ∈ Ni

S(wj , y).

αij (or αji) denotes the maximum similarity betweenwi (or wj) and the neighbors ofwj (or wi) that
is computed according to a similarity metricS: for semantic neighborhoods one of the metrics defined
in Section 3, or the metric defined in Section 4 for affective neighborhoods.Ni andNj are the set of
neighbors forwi andwj, respectively. For the case of semantic neighborhoods the definition of Mn

is motivated by the maximum sense similarity assumption (Resnik, 1995) hypothesizing that the most
salient information in the neighbors of a word are semantic features denoting senses of this word. An
example illustrating the computation of similarity between targets “forest” and “fruit” is depicted by
Fig.2(a). Mn(“forest” , “fruit” ) = 0.30 because the similarity between “fruit” and “tree” (among all
neighbors of “forest”) is the largest.
Attributional Neighborhood Similarity. The similarity betweenwi andwj is defined as follows:

Rn(wi, wj) = max{βij , βji}, (3)

where
βij = ρ(CNi

i , CNi
j ), βji = ρ(CNj

i , C
Nj

j ).

1Similarity metrics can be applied over the semantic and affective neighborhoods ofwi andwj . In the metric definitions
we use the (generic) notationsNi andNj to refer to the neighborhoods ofwi andwj , respectively, regardless of the type (i.e.,
semantic or affective) of those neighborhoods.

165



CNi
i = (S(wi, x1), S(wi, x2), . . . , S(wi, xn)) andNi = {x1, x2, . . . , xn}. The vectorsCNi

j , C
Nj

i , and

C
Nj

j are defined similarly asCNi
i . Theρ function stands for the Pearson’s correlation coefficient,Ni

is the set of neighbors of wordwi, andS is a similarity metric: for semantic neighborhoods one of
the metrics defined in Section 3, or the metric defined in Section 4 for affective neighborhoods. The
motivation behind this metric is attributional similarity, i.e., we assume that neighborhoods encode se-
mantic or affective features of a word. Semantically/affectively similar words are expected to exhibit
correlated similarities with respect to such features. Thesimilarity computation process is exempli-
fied in Fig.2(b) for the target wordswi =“forest” andwj = “fruit”. The similarity vectors between
the neighborsNi of “forest” and each of the words are computed:CNi

i = (0.16, 0.09, . . . , 0.09),
CNi

j = (0.10, 0.30, . . . , 0.01). Similarly, C
Nj

i , C
Nj

j are computed for the neighbors of “fruit” and
combined to estimateRn(“forest” , “fruit” ) = −0.04.

5.3 Fusion of Lexical and Affective Activation Models

In this section, we propose two schemes for the unsupervisedfusion of semantic and affective activation
models defined in Section 5.1. The motivation behind this idea is the hypothesis that both semantic and
affective activations are triggered given lexical stimuli, e.g., the target words for which similarity is com-
puted. In addition, for the task of similarity computation we assume that the two activation models are
fused rather being exploited independently. Two types of fusion are proposed, namely, local and global.
The local scheme is based on the fusion of semantic and affective neighborhoods of relatively small size.
The largest possible sizes of semantic and affective neighborhoods (i.e., equal to the number of network
nodes) are used for the case of global fusion.

Local. A hybrid neighborhoodNΨ(n)
i for a target wordwi is computed based on its lexical and af-

fective neighborhoods,Li(n) andAi(n) of sizen, as follows:

N
Ψ(n)
i = f(Li(n), Ai(n)), (4)

wheref stands for a set operator given thatLi(n) andAi(n) are represented as sets.

Global. A hybrid neighborhoodNΩ(n)
i of sizen for a target wordwi is computed based on its lexical

and affective neighborhoods,Li(|O |) andAi(|O |) of size|O | (i.e., equal to the size of the lexiconO)
as:

N
Ω(n)
i = g(S(wi, Li(|O |)), S(wi, Ai(|O |));n), (5)

whereS(wi, Li(| O |)) andS(wi, Ai(| O |)) stand for the vectors including the semantic and affective
similarity scores between targetwi and the members ofLi(|O |) andAi(|O |), respectively. Before the
application of theg fusion function the two vectors should be normalized and aligned. The fusion results
into a single vector of sizeO from which then top-ranked values are selected and the correspondingn

lexicon entries are considered as members of the neighborhood N
Ω(n)
i .

Fusion level: Examples
function Lexical model Affective model Fused

Local: Li ∪ Ai Li ={pine, tree,...} Ai ={taste, sugar,...} {pine, tree, taste, sugar,...}
Global: ζL

i · ζA
i ζL

i = [0.5, 0.3, . . . ] ζA
i = [0.2, 0.8, . . . ] [0.1, 0.24, . . . ]

Global: max{ζL
i , ζA

i } ζL
i = [0.5, 0.3, . . . ] ζA

i = [0.2, 0.8, . . . ] [0.5, 0.8, . . . ]

Table 1: Fusion functions for the lexical and affective activation models.

We present results for a number of simple functions for the fusion ofLi andAi shown in Table 1. For
the case of local fusion, the hybrid neighborhood is built bytaking the union of semantic and affective
neighborhoods. Denoting vectorsS(wi, Li(| O |) andS(wi, Ai(| O |) asζL

i andζA
i , respectively, two

functions are used for the case of global fusion:ζL
i ·ζA

i andmax{ζL
i , ζA

i }. The first stands for the product
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of ζL
i andζA

i . The second function gives the maximum element-wise value,i.e, for each lexicon entry
and the targetwi the respective maximum semantic or affective similarity score is selected.

6 Features of Semantic Semantic Opposition

Here, we propose two feature sets that are relevant to the relations of synonymy and antonymy (also
referred to as semantic opposition (Mohammad et al., 2013)). Antonymy constitutes a special lexical
relation, since it embodies both the notion of (semantic) proximity and distance (Cruse, 1986). These
features are based on the affective content of words and features of semantic similarity. Unlike people
that can easily distinguish synonyms and antonyms, this is achallenging problem for the framework
of DSMs. Both synonyms and antonyms exhibit strong associations which can be empirically verified
via standard psycholinguistic experiments, as well as within the computational framework of DSMs.
For example, in free association norms antonyms are frequently given as responses. Regarding DSMs,
the corpus-derived statistics for synonyms and antonyms are correlated leading to comparable similar-
ity scores. For example, in (Mohammad et al., 2013) the relatedness (similarity) scores of semantically
similar (SW) and antonymous (AW) words were analyzed. Interestingly, it was found that the average
score for AW was slightly higher compared to SW. The affective content of words can be considered
as connotations that are added to the respective semantics.The emotional similarity between synonyms
and antonyms is expected to have a contribution regarding their discrimination. For this purpose, the
following features are proposed:

1) Lex1 (lexical). Similarity score based on direct co-occurrence counts. This can be regarded as a
coefficient of semantic priming.
2) Lex2 (lexical). Similarity score computed according to (2) (max-based network metric). Lexical fea-
tures are used for both network layers.
3) Lex3 (lexical). Similarity score computed according to (3) (correlation-based network metric). Lexi-
cal features are used for both network layers.
4) Aff1 (affective). Affective distance computed on the three-dimensional space (valence–arousal–
dominance). This can be thought as a coefficient of affectivepriming.
5) Aff2 (affective). Similarity: score computed according to (2) (max-based network metric). Affective
features are used for both network layers.
6) Aff3 (affective). Similarity score computed according to (3) (correlation-based network metric). Af-
fective features are used for both network layers.

In essence, for each feature set (lexical and affective) there two types of similarity. The first type consid-
ers the direct similarity of the words of interest, while forthe second type, the similarity is estimated via
the respective neighborhoods.

7 Experiments and Evaluation Results

In this section, we investigate the role of semantic and affective features for two tasks of lexical se-
mantics. Semantic and affective activation models are usedin combination with the aforementioned
network-based similarity metrics for the computation of word semantic similarity. This is presented
in Section 7.1, while the fusion of the two activation types is shown in 7.2. In Section 7.3, semantic
and affective features are evaluated in the framework of semantic opposition. This is done as a binary
classification problem for the discrimination of synonyms and antonyms.

7.1 Word Semantic Similarity Computation

Creation of Networks. A lexicon consisting of8, 752 (single-word) English nouns was taken from the
SemCor3 corpus. For the extraction of the textual features aweb harvested corpus was created as follows.
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For each lexicon entry an individual query was formulated and the1, 000 top ranked results (document
snippets) were retrieved using the Yahoo! search engine andaggregated. The affective ratings (v, a and
d) for these nouns were computed using as seeds the manually annotated ANEW lexicon (Bradley and
Lang, 1999) (600 seeds were used) and estimating theλ weights of (1) according to (Malandrakis et al.,
2013). RegardingS(.) used in (1), the context-based (CT) similarity metric exploiting text features was
applied. The network creation consisted of two main steps: 1) computation of semantic and affective
neighborhoods as described in Section 5, 2) computation of similarity scores usingMn andRn defined
by (2) and (3), respectively. For the case of semantic neighborhoods two types of similarity metrics (in
conjunction with the respective textual features) were applied: co-occurrence-based (CC), and context-
based (CT) withH =1.

Evaluation. The task of noun semantic similarity computation was used for evaluation purposes with re-
spect to the following datasets (i) MC (Miller and Charles, 1998),(ii) RG (Rubenstein and Goodenough,
1965), and (iii) WS353 (Finkelstein et al., 2002), retaining those pairs that were included in the network.
The Pearson’s correlation coefficient against human ratings was used as evaluation metric.

Type of feature for Network- Number of neighbors (n)
Selection Similarity based

of neighbors computation metric 10 30 50 100 150
(1st layer) (2nd layer)

MC dataset
Lexical (CC) Lexical (CT) Mn 0.48 0.80 0.83 0.91 0.90
Lexical (CT) Lexical (CC) Rn 0.83 0.78 0.80 0.78 0.76

Affective Lexical (CC) Rn 0.85 0.91 0.88 0.85 0.83
RG dataset

Lexical (CC) Lexical (CT) Mn 0.57 0.74 0.78 0.86 0.82
Lexical (CT) Lexical (CC) Rn 0.65 0.71 0.72 0.72 0.72

Affective Lexical (CC) Rn 0.78 0.80 0.79 0.77 0.74
WS353 dataset

Lexical (CC) Lexical(CT) Mn 0.42 0.55 0.59 0.64 0.65
Lexical (CT) Lexical(CC) Rn 0.63 0.58 0.59 0.56 0.55

Affective Lexical (CC) Rn 0.63 0.68 0.68 0.65 0.63

Table 2: Correlation for word similarity computation.

The performance for various neighborhood sizes is presented in Table 2 for two approaches regarding
the activation model (Layer 1) followed by the neighborhood-based similarity estimation (Layer 2). Two
types of activation models are used for the computation neighborhoods, namely, lexical and affective.
Once the neighborhoods are computed, the network metricsMn andRn are employed for the similar-
ity computation based on lexical features. Overall, there are two basic settings:Lexical+Lexicaland
Affective+Lexical. The core novelty of this work is on the exploitation of affective features for the acti-
vation model, i.e., the Affective+Lexical approach. For the sake of completeness, the results when using
textual features only (Lexical+Lexical) are presented forthe respective best performing metrics and fea-
ture types (according to (Iosif and Potamianos, 2015)): CC/CT for Mn and CT/CC forRn. Regarding
the Affective+Lexical approach, the performance is reported only forRn that was found to outperform
the (omitted)Mn metric. It is notable2 that the Affective+Lexical combination performs very wellbe-
ing competitive3 against the best Lexical+Lexical approach, as well as otherstate-of-the-art approaches
(Agirre et al., 2009). Specifically, the Affective+Lexicalcombination achieves higher (0.68 vs. 0.65)

2This was experimentally verified using the affective word ratings given by human annotators (ANEW affective lexicon
(Bradley and Lang, 1999)), instead of the automatically estimated ratings produced by (1).

3The detailed comparison of the proposed affective models with other lexical DSMs is beyond the scope of this study.
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and equal (0.91) correlation scores -compared to the Lexical+Lexical combination- for the WS353 and
MC datasets, respectively. The Affective+Lexical combination consistently achieves higher (or equal)
performance compared to both Lexical+Lexical combinations when few (10-50) neighbors are used.
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Figure 3: Correlation for word similarity computation as a function of neighborhood size for pairs con-
sisting of words with: (a) distant affective magnitude (150pairs from WS353), and (b) comparable
affective magnitude (122 pairs from WS353). Results are shown for Lexical+Lexical (solid line) and
Affective+Lexical (dotted line) approaches.

Motivated by the very good performance of the Affective+Lexical approach, we conducted further
investigation regarding the role of affective informationwith respect to the affective relation of the words
for which the similarity is computed. For this purpose, the pairs of the largest experimental dataset
(WS353) where distinguished into two groups according to the affective magnitude of their constituents
words. The first group includes pairs whose both constituents have high or low affective magnitude
(i.e., words with comparable magnitude), e.g., (king, queen). The remaining pairs were included in the
second group (i.e., words with distant magnitude), e.g., (psychology, depression). The discrimination
resulted into 122 and 150 pairs consisting of words with comparable and distant affective magnitude,
respectively. The performance of the Lexical+Lexical and Affective+Lexical approaches using theRn

similarity metric is shown as a function of the neighborhoodsize in Fig. 3(a) for words with distant
affective magnitude, and in Fig. 3(b) for words with comparable affective magnitude. We observe that the
Affective+Lexical approach consistently achieves highercorrelation compared to the Lexical+Lexical
approach for both groups. The superiority of the Affective+Lexical approach is shown more clearly for
the case of words with distant affective magnitude (Fig. 3(a)).

7.2 Fusion of Lexical and Affective Activation Models

Fusion Fusion Number of neighbors
level function 10 30 50 100 150

Best individual model 0.63 0.68 0.68 0.65 0.63
Best lexical model 0.42 0.55 0.59 0.64 0.65

Local Li ∪ Ai 0.45 0.47 0.44 0.47 0.46
Global ζL

i · ζA
i 0.46 0.48 0.50 0.49 0.48

max{ζL
i , ζA

i } 0.63 0.68 0.68 0.65 0.63

Table 3: Correlation for word similarity computation (WS353 dataset).

In this section, the evaluation results for the fusion of semantic and affective models (Layer 1) are
presented. The fusion schemes shown in Table 1 were used for the computation of hybrid neighbor-
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Semantic Baseline Feature types
relation (random) Lexical Affective

(Lex1,Lex2,Lex3) (Aff1,Aff2,Aff3)

Synonymy 50% 61% 62%
Antonymy 50% 61% 82%

Table 4: Classification accuracy for synonymy and antonymy:lexical vs. affective feature sets.

Semantic Baseline Lexical features Affective features
relation (random) Lex1 Lex2 Lex3 Aff1 Aff2 Aff3

Synonymy 50% 51% 61% 59% 61% 61% 51%
Antonymy 50% 55% 61% 61% 81% 82% 50%

Table 5: Classification accuracy for synonymy and antonymy for individual lexical and affective features.

hoods. The network-based similarity metricRn was applied over the hybrid neighborhoods for the
computation of semantic similarity between words (Layer 2). The performance is presented in Table 3
for the largest dataset (WS353) with respect to various neighborhood sizes. The correlation achieved
by the best performing individual model (Affective+Lexical usingRn) is included for comparison pur-
poses. The performance of the best model based solely on lexical features (Lexical+Lexical usingMn)
is also presented. Regarding the different fusion schemes,the highest performance is obtained for the
global approach using the maximum-based function (max{ζL

i , ζA
i }). This scheme yields performance

that is identical to the best individual model. Also, we observe that the best fusion scheme consistently
outperforms the Lexical+Lexical approach for10 − 100 neighbors.

7.3 Synonymy vs. Antonymy

Here, we compare the performance of semantic and affective features (described in Section 6) for the
discrimination of word pairs the fall into two categories, synonyms and antonyms. The word pairs were
taken from two sets of WordNet synonyms and opposites4 We retained those pairs that were included in
the networks described in Section 7.1. In total, 172 pairs are contained in each category for a total of 344
pairs. The experimental dataset include pairs such as (happiness, felicity) and (comedy, tragedy) that
correspond to synonyms and antonyms, respectively. Support Vector Machines5 with linear kernel were
applied for classification. For evaluation purposes, 10-fold cross validation (10-FCV) was used, while
classification accuracy was used as evaluation measurement.

The classification accuracy is shown for each category in Table 4 with respect to two feature sets: 1)
all lexical features (Lex1–Lex3), and 2) all affective features (Aff1–Aff3)6. The baseline performance
(yielded by random classification) is also presented. Both features types exceed the baseline for syn-
onyms and antonyms. The main observation is that the set of affective features outperforms the lexical
feature set for the case of antonyms, i.e., 82% vs. 61% classification accuracy. Regarding synonyms,
lexical and affective features yield almost identical performance. The moderate discrimination ability of
lexical features was expected since both synonyms and antonyms exhibit high similarity scores as mea-
sured in the framework of DSMs. These observations suggest that the affective information is a major
contributor for the case of antonyms, which is not surprising since such words are emotionally distant.
The performance for all individual features in presented inTable 5 for each category. It is observed that
the similarities based on word co-occurrence (Lex1) give the lowest performance for both synonyms and
antonyms, while the network-based similarities (Lex2 and Lex3) yield slightly higher results. The key
observation is that the top performance, i.e., greater than80%, can be achieved either using the simple

4http://www.saifmohammad.com/WebPages/ResearchInterests.html\#Antonymy.
5Similar results were obtained with other classifiers, e.g.,Naive Bayes.
6For the network metrics we usedn=30, however, similar results were achieved for other values ofn, e.g., 10, 50, 100.
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affective similarity (Aff1) or the maximum-based network similarity metric (Aff2). Given the lack of a
standard dataset for this task, the comparison of differentDSMs is not easy. A corpus-based algorithm
was evaluated with respect to similar a task (synonym/antonym discrimination for 136 pairs7) achieving
75% classification accuracy under 10-FCV (Turney, 2011).

8 Conclusions

The affective spaces were shown to contain salient information for estimating semantic similarity. The
Affective+Lexical approach achieved competitive performance compared to (an example of) the main-
stream paradigm of distributional semantic models (i.e., the Lexical+Lexical approach). Moreover, the
affective models were found to be more appropriate for the first network layer (compared to the lexical
models) when the words for which similarity is computed exhibit distant affective magnitude. To the
best of our knowledge, this is the first empirical indicationthat the affect can be regarded as another
source of information that plays a role for the task of semantic similarity estimation between words.
Correlation-based similarity metrics and smaller neighborhoods were shown to perform better for Affec-
tive+Lexical DSMs. Another major finding is that the affective features are superior to the lexical ones
for the case of antonym identification. Regarding the fusionof lexical and affective activation models, the
global scheme (i.e., across the entire network) was found tooutperform the local one. Further research
is needed for understanding the complementarities of affective and semantic spaces, which is important
for the design of improved fusion schemes. Last but not least, the role of affective features should be in-
vestigated with respect to more semantic tasks (e.g., paraphrasing) and other types of semantic relations
and linguistic phenomena (e.g., figurative language).
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