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Abstract

A large part of human communication involves referring to entities in the world, and often these
entities are objects that are visually present for the interlocutors. A computer system that aims to
resolve such references needs to tackle a complex task: objects and their visual features must be de-
termined, the referring expressions must be recognised, extra-linguistic information such as eye gaze
or pointing gestures must be incorporated — and the intended connection between words and world
must be reconstructed. In this paper, we introduce a discriminative model of reference resolution that
processes incrementally (i.e., word for word), is perceptually-grounded, and improves when interpo-
lated with information from gaze and pointing gestures. We evaluated our model and found that it
performed robustly in a realistic reference resolution task, when compared to a generative model.

1 Introduction

Reference to entities in the world via definite description makes up a large part of human communication
(Poesio and Vieira, 1997). In task-oriented situations, these references are often to entities that are visible
in the shared environment. In such co-located settings, interlocutors can make use of extra-linguistic
cues such as gaze or pointing gestures. Furthermore, listeners resolve references as they unfold, often
identifying the referred entity before the end of the reference (as found, inter alia, by Tanenhaus and
Spivey-Knowlton (1995); Spivey (2002)). Computational research on reference resolution, however, has
mostly focused on offline processing of full, completed referring expressions, and not attempted to model
this online nature of human reference resolution. On a more technical level, most of the models making
use of stochastic information (see discussion below) have been generative models; even though such
models are known to often have certain disadvantages compared to discriminative models.1

In this paper, we introduce a discriminative model of reference resolution that is incremental in that
it does not wait until the end of an utterance to process, rather it updates its interpretation at each word.
Moreover, the semantics of each word is perceptually grounded in visual information from the world. We
evaluated our model and found that it works robustly when compared to a similar generative approach.

In the following section we explain the task of reference resolution and discuss related work. That is
followed by an explanation of our model and evaluation experiment. We end with some analyses of the
model’s strengths and areas of improvement.

2 Background and Related Work on Reference Resolution

Reference resolution (RR) is the task of resolving referring expressions (henceforth REs; e.g., the red
one on the left) to the entity to which they are intended to refer; the referent. This can be formalised as
a function frr that, given a representation U of the RE and a representation W of the (relevant aspects

1But see the nuanced discussion by Ng A.Y. & Jordan M. I. (2002).
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of the) world (which can include aspects of the discourse context), returns I∗, the identifier of one the
objects in the world that is the intended referent of the RE.

I∗ = frr(U,W ) (1)

This function frr can be specified in a variety of ways. A number of recent papers have used stochas-
tic models using the following approach: given W and U , the goal of RR is to obtain a distribution over a
specified set of candidate entities in that world, where the probability assigned to each entity represents
the strength of belief that it is the referred one. The referred object is then the argmax of that distribution:

I∗ = argmax
I

P (I|U,W ) (2)

We have worked in this area before. Kennington and Schlangen (2013) we applied Markov Logic
Networks (Richardson and Domingos, 2006) to the task of computing the distribution over I . The world
W , a virtual game board of puzzle pieces, was represented symbolically (e.g., objects were represented
by their properties such as colour and shape). The utterance U was represented by its words. We repeated
the experiments later in Kennington et al. (2013) where the utterance and world were represented in the
same way, but the model that produced the distribution over the candidate objects was generative; it
modeled the joint distribution over the objects and their properties, and the words in the utterance. (This
model will be further discussed and used as a baseline for comparison below.) In Kennington et al.
(2014); Hough et al. (2015) we used that same generative model and representation of W , but U was
represented as a semantic abstraction.

Funakoshi et al. (2012) used a Bayesian network approach. The world W (in their case, a set of
tangram puzzle pieces) was represented as a set of concepts (e.g., shape type), and U was represented
by the words in the REs, in an interctive human-human setting. The Bayesian network was used to learn
a mapping between concepts and U . The model could handle various types of REs, namely definite
references, exophoric pronoun references, and deictic (pointing) references to objects. Similar data was
used in Iida et al. (2011), but the mapping between U and W was done with a support vector machine
classifier. We recently applied our generative model to this data, with improved results in some areas
Kennington et al. (2015).

Engonopoulos et al. (2013) also used a generative approach; W was modeled as an observation
model (i.e., a set of features over the objects in a 3D scene), and U was a semantic model that abstracted
over the referring expression.

In Matuszek et al. (2014), W was represented as a distribution over properties (e.g., color and shape)
of real-world objects (small wooden blocks of various shapes and colors) as represented by computer-
vision output. U was represented as a semantic abstraction in the form of a Combinatory Categorical
Grammar parse. Resolving I amounted to generatively computing a joint distribution over the represen-
tation of U and W .

In all of these approaches, the objects are distinct and have specific visual properties, such as color,
shape, and spatial placement. The set of properties is defined and either read directly from the world if
it is virtual, or computed (i.e., discretised) from the real world objects. In this paper, we take a different
approach to representing the worldW and how the distribution for I is computed. Instead of representing
the world as a set of discrete properties or concepts, we represent the world with a set of more low-level
visual features (e.g., color-values) and compute the distribution over objects discriminatively, as will be
explained in Section 3. This represents a kind of perceptually-grounded learning of how visual features
connect to words in the RE, where the meaning of the word is represented by a classifier, as explained
below.

Treating words as classifiers working with perceptual information has been explored before. Steels
and Belpaeme (2005) used neural networks to connect language with colour terms. Their model learned
the way colours were used by interacting with humans. Larsson (2013) addressed integrating perceptual
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meaning into a formal semantics by a model that was tested in a game where participants described a
simple object as being on the left or right side of the game board. Both of these approaches focused on a
very limited lexicon of words that are used to described visual objects, namely colours or left/right, and
these approaches only took limited perceptual information into account. In this paper, we don’t limit the
lexicon to a certain class of words, rather we attempt to learn a perceptually-grounded meaning of all the
words in a corpus (described below).

Situated RR is a convenient setting for learning perceptually-grounded meaning, as objects that are
referred to physically exist, are described by the RE, and have visual features that can be computationally
extracted and represented. Kelleher et al. (2005) approached RR using perceptually-grounded models,
focusing on saliency and discourse context. The task of RR was also used in Gorniak and Roy (2004);
descriptions of objects were used to learn a perceptually-grounded meaning with focus on spatial terms
such as on the left. However, unlike our approach, these approaches did not model the meaning of words
directly, nor are they incremental.

3 A Model of Reference to Visible Objects

Our model interpolates information from the referring expression proper and from other, multimodal
information sources such as gaze and pointing gestures. We will describe the parts of the model in turn.

3.1 A Discriminative Model of Linguistic Evidence

Overview As explained with formula (2), we want our model to give us a probability distribution over
the candidate objects, given a referring expression (or, to be more precise, given possibly just a prefix of
the expression). Instead of trying to learn a mapping between full referring expressions and objects, we
break the problem down into one of learning a mapping between individual words and objects, and of
composition of the evidence into a prediction for the full expression (or expression prefix).

The Word Model At the basis of the model then is a prediction for a given word and a given object
of how well the object fits the word. To compute this, we trained for each word w from our corpus
of referring expressions a binary logistic regression classifier that takes a representation of a candidate
object via visual features (x) and returns a probability pw for it being a good fit to the word (where w is
the weight vector that is learned and σ is the logistic function):

pw(x) = σ(wᵀx + b) (3)

This model is shown in Figure 1 as a one-layer neural network.

R G B #E

�(w|x + b)

x
b

Figure 1: Representation as 1-layer NN

hue, saturation, value
red, green, blue

number of detected edges
x,y coordinates

horizontal skewness
vertical skewness
orientation value

Figure 2: List of features used in our model (total
of 12 features).

We train these classifiers using a corpus of REs (further described below), coupled with representa-
tions of the scenes in which they were used and an annotation of the referent of that scene. The setting
was restricted to reference to single objects. To get positive training examples, we pair each word of a
RE with the features of the referent. To get negative training examples, we pair the word with features
of (randomly picked) other objects present in the same scene, but not referred to by it. This process is
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shown in Algorithm 1. This selection of negative examples makes the assumption that the words from
the RE apply only to the referent. This is wrong as a strict rule, as other objects could have similar visual
features as the referent; for this to work, however, this has to be the case only more often than it is not.
This is so for our domain, and in general seems a plausible thing to assume that often words used in REs
do indeed uniquely single out their referent.

Algorithm 1 Training algorithm for our model, each word classifier receives a set of positive and negative training
examples, then maximum likelihood is computed for each word.
1: procedure TRAIN(frame)
2: for each RE in corpus do
3: for each word in RE do
4: pair word with features of object referred to by RE; add to positive examples
5: pair word with features of n objects not referred to by RE; add to negative examples
6: end for
7: end for
8: for each word in vocabulary do
9: train word binary classifier

10: end for
11: end procedure

Application and Composition This model gives us a prediction for a pair of word and object. What
we wanted, however, is a distribution over all candidate objects, and not only for individual words, but
for (incrementally growing) full REs. To get the former, we apply the word/percept classifier to each
candidate object, and normalise (where xi is the feature vector for object i):

P (I = i|U = w,W ) =
pw(xi)∑

k∈I pw(xk)
(4)

In effect, this turns this into a multi-class logistic regression / maximum entropy model—but only
for application. The training regime did not need to make any assumptions about the number of objects
present, as it trained classifiers for a 1-class problem (how well does this given object fit to the word?).
The multi-class nature is also indicated in Figure 3, which shows multiple applications of the network
from Figure 1, with a normalisation layer on top.

�(w|x1 + b) �(w|x2 + b) �(w|x3 + b)

x1 x2 x3

Figure 3: Representation as network with normalisation layer.

To compose the evidence from individual words into a prediction for the whole (prefix of the) re-
ferring expression, we chose the simplest possible approach, namely simply to average the previous
distribution with the new one. This represents an incremental model where new information from the
current increment is added to what is already known. Such a simple model represents an intersective way
of composing the words (or, rather, their denotations). More sophisticated approaches can be imagined
(e.g., using syntactic structure); we leave exploring them to future work.

P (I = i|Uk
1 ,W ) = [P (I = i|Uk−1

1 ,W ) + P (I = i|Uk,W )] ∗ 1
2

(5)
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3.2 Evidence from Gaze and Deixis

The full model combines the evidence from linguistic information with evidence from other information
sources such as the speaker’s gaze and pointing gestures. For each, we calculate a reference point (R)
on the scene: for gaze, the fixated point as provided by an eye tracker; for deixis, the point on the scene
that was pointed at based on a vector calculated from the shoulder to the hand (as described in Kousidis
et al. (2013), using the Microsoft Kinect). The centroids of all the objects (I) can then be compared to
that reference point to yield a probability of that object being ‘referred’ by that modality (i.e., gazed at
or pointed at) by introducing a Gaussian window over the location of the point:

pdistance(Ri, Ij ;σ) = exp−(xi − xj)2

2 ∗ σ2
∗ exp−(yi − yj)2

2 ∗ σ2
(6)

where the mean is R and σ is set by calculating the standard deviation of all the object centroids and
the reference point. This can then be normalised over all the pdistance scores to produce a distribution
over I for each modality where the closer the object is to the reference point, the higher its probability.
(We implicitly make the somewhat naive assumption here that the referred object will be looked at by the
speaker most of the time during and around the RE. This is in general not true (Griffin and Bock, 2000),
but works out here.)

Our final model of RR fuses the the three described modalities of speech, gaze, and deixis using a
linear interpolation, where the α parameters are learned from held-out data by ranging over values such
that the α values sum to one, and computing the average rank (metric explained below), retaining the α
values that produced the best score for that set:

P (I|S) = P (I|S1)α1 + P (I|S2)α2 + P (I|S3)(1− α1 − α2) (7)

4 Evaluation

We will now explain our evaluation experiment, including the data we used, the pre-processing performed
on it, a generative model that we will compare to, and the metrics that we will use in our evaluation. We
end this section with the results.

4.1 Data

We used data from the Pentomino puzzle domain as described by Kousidis et al. (2013). In this Wizard-
of-Oz study, the participant was confronted with a game board containing 15 randomly selected Pen-
tomino puzzle pieces (out of a repertoire of 12 shapes, and 6 colors). The positions of the pieces were
randomly determined, but in such a way that the pieces grouped in the four corners of the screen, an
example is shown in Figure 4. The participants were seated at a table in front of the screen. Their gaze
was then calibrated with an eye tracker (Seeingmachines FaceLab) placed above the screen and their arm
movements (captured by a Microsoft Kinect, also above the screen) were also calibrated. They were then
given task instructions: (silently) choose a Pentomino tile on the screen and then instruct the computer
system to select this piece by describing and pointing to it. When a piece was selected (by the wizard),
the participant had to utter a confirmation (or give negative feedback) and a new board was generated
and the process repeated. In this paper, we denote each of these instances as an episode. The utterances,
board states, arm movements, and gaze information were recorded in a similar fashion as described in
Kousidis et al. (2012). The wizard was instructed to elicit pointing gestures by waiting to select the
participant-referred piece by several seconds, unless a pointing action by the participant had already oc-
curred. When the wizard misunderstood, or a technical problem arose, the wizard had an option to flag
the episode. In total, 1214 episodes were recorded from 8 participants (all university students). All but
one were native speakers of German; the non-native spoke proficient German.
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Figure 4: Example Pentomino board for gaze
and deixis experiment; the yellow T in the
top-right quadrant is the referred object.

Figure 5: Pentomino Board that has been dis-
torted from its original form (Figure 4); all ob-
jects have distorted shapes and colors.

For each episode, the corpus contains two transcriptions of the utterance (one performed by expert
transcribers, as well as one created by Google Web Speech; WER 49.8% when compared to expert
transcription), deixis and gaze information, as well as an image of what the board looked like to the
participant, see Figure 4. Removing episodes that were flagged by the Wizard yielded 1049 episodes
with corresponding data. We also have a version of each board image that has been processed in a more
involved way, which will now be explained.

Scene Processing We want our model to work with images of real objects as input, even though for our
particular data the scenes are represented symbolically (that is, we know without uncertainty each piece’s
shape, color, and position). Using the images that were generated from these symbolic descriptions and
performing computer vision on them does not introduce much uncertainty, as there is no variation in
color or appearance of individual shapes, and so the data cannot serve to form generalisations. To get
closer to conditions as they would hold when working with camera images (e.g., variations of color due
to variations in lighting, distortion of shapes due to camera angles, etc.), we pre-processed these images:2

We shifted the color spectrum as follows: the hue channel by a random number between -15 and 15 and
the saturation and value channels by a random number between -50 and 50. For the object shapes, we
apply affine transformations defined by two randomly generated triangles and warp the image using that
transform. This generates more complex shapes that retain some notion of their original form. Figure 5
shows a game board that has been distorted from its original in Figure 4.

Using these distorted images, we processed each image using the Canny Edge Detector (Canny,
1986) and used mathematical morphology to find closed contours of the objects, thereby segmenting the
objects from each other. We acquired the boundary of the objects (always 15 of them), following the
inner contours as identified by a border tracing algorithm (Suzuki and Abe, 1985). For each individual
object we then extract the number of edges, RGB (red, green, blue) values, HSV (hue saturation value),
and from the object’s moments: its centroid, horizontal and vertical skewness (third order moments
measuring the distortion in symmetry around the x and y axis), and the orientation value representing
the direction of the principal axis (combination of second order moments). Taken together, this set of
features represents a single object, which can be used for the word-object classifiers described earlier.

Procedure Using 1000 episodes, we evaluate our model across 10 folds (900 episodes for training, 100
for evaluation). Our baseline model is a generative model of RR that will be described below (random
baseline is 7%). We also incorporate gaze and deixis by treating them as individual RR models and
interpolating their distributions with the distribution given by the model. We ran the experiments twice,
once with hand-transcribed utterances as basis for U , and once with automatic speech recogniser (ASR)
output. The α weights (Equation 7) for hand-transcribed data were for speech, deixis and gaze: 0.72,
0.16, and 0.12 respectively, and for ASR 0.53, 0.23, 0.24, respectively (note that for ASR, more weight
was given to the non-speech models).

2This approach also allows us to keep control over the degree of noisiness and systematically study its effect; this is some-
thing, however, that we leave for future work.
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Task The task is RR, as described earlier. At each increment, the model returns a distribution over all
objects; the probability for each object represents the strength of the belief that it is the referred one. The
argmax of the distribution is chosen as the hypothesised referent.

A Stronger Baseline Model for Comparison To be able to judge the performance of our model better,
we compare its results to a generative model we developed for the same domain, the simple incremental
update model (SIUM) described in Kennington et al. (2013, 2014). SIUM is a good candidate to compare
with this approach because it is also meant to work incrementally and it can accommodate uncertainty
in the world representation. As a generative model SIUM learns the joint distribution between RE U and
the world W , and it adds as a latent variable R, the properties of the object. This is formalised as follows
(following (Kennington et al., 2013); see there for further details):

P (I|U,W ) =
1

P (U)
P (I)

∑
r∈R

P (U |R)PW (R|I) (8)

Here, PW (R|I) models the connection between objects and properties that are picked out for verbal-
isation. In the version described in Kennington et al. (2013, 2014), this model is read off the symbolic
representation of the scene: the assumption is made that every property that a given object has is equally
likely to be verbalised. This is where uncertainty about properties can be inserted into the model, which
we do here. We trained an SVM classifier to classify the objects (pre-processed and segmented as de-
scribed above) with respect to colors (e.g., classes like red, blue, etc.) and for shapes (e.g., X, T, etc.).
The spatial placement of objects was determined by rules; the board was segmented into 4 quadrants
and an object received a left/right, and top/bottom property with a probability of 1 if the object
was in that corresponding area of the board. Where in Kennington et al. (2013, 2014) there was exact
knowledge about the properties of objects, we now have distributions over properties, and the changed
assumption now is that the likelihood of a property being verbalised is proportional to the strength of
belief in it having this property. Other than that, SIUM remained unchanged.

4.2 Metrics for Evaluation

To give a picture of the overall performance of the model, we report accuracy (how often was the argmax
the intended referent) after the full referring expression has been processed and average rank (position
of intended referent among the 15 candidates on ordered distribution; ideal would be an average rank of
1, which would also correspond to 100% accuracy). Together, these metrics give an impression of how
interpretable the full distribution is, beyond just the argmax. We report results for testing the model only
given speech information (and no interpolation with the other models), and the other modalities added
separately and jointly. We also computed results for SIUM given speech information.

We also look into how the model performs incrementally. For this, we followed previously used
metrics (Schlangen et al., 2009; Kennington et al., 2013), where the predicted referent is compared to the
gold refererent at each increment:
• first correct: how deep into the RE (%) does the model predict the referent for the first time?
• first final: if the final prediction is correct, how deep into the RE was it reached and not changed?
• edit overhead: how often did the model unnecessarily change its prediction (the only necessary pre-
diction change happens when it first makes a correct prediction)?

4.3 Results

As Figures 6 and 7 show, our model performs well above the SIUM baseline, for all settings. (The random
selection baseline sits at 7%.) We assume that it performs better not only because as a discriminative
model it does not need to model the full joint distribution, but also because it directly learns a connection
between words and visual features and does not need to go through a set of pre-determined features,
which could be considered as a “lossy” compression of information. The Figures also show that using
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Figure 6: Results of our model in accuracies;
higher numbers denote better results.
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Figure 7: Results of our model in average rank; lower
numbers denote better results.

ASR output does have an impact on the performance, as expeced. The speech+deixis models tend to
work better than speech+gaze models in terms of accuracy; we speculate that this is due to the (naive)
assumption implicit in our setup that participants gaze at the referred object most of the time, where in
fact they often look at distractors, etc., making gaze a noisier model of predicting the referent. The story,
however, is slightly different for the average rank: speech+deixis is slightly worse than speech+gaze at
least for hand-transcribed data; this simply means that though speech+deixis gets the referred object into
the argmax position more than speech+gaze, it doesn’t always mean a better overall distribution. As
expected, the best-scoring average rank is when all models are interpolated, both for hand-transcribed
and ASR. Overall, there is about a 6% increase when both modalities are included when using hand-
transcribed data. The increase when including both modalities is slightly larger (10%) with ASR. This
nicely shows that when given noisier linguistic information, the model can partially recover by taking
more benefit from interpolating with other information sources.

4.4 Incremental Results

Figure 8 gives an overview of the incremental performance of our model, compared to that of SIUM.
(Results here are for the hand-transcribed utterances.) As the metrics talk about “% into expression”,
these metrics can of course only be computed when the eventual length of the expression is known, that
is, after the fact. Moreover, to make these units comparable (as “10% into the utterance” is very different
in terms of words for an utterance that consists of 2 words than for one that is 12 words long), we bin
REs into the classes short, normal, long (1-6, 7-8, 9-14 words, respectively, as to group together REs that
are of similar length).

Ideally for use downstream in a dialogue system, the reference resolver would make a first correct
decision quickly, and this would also be the final decision (that is, in the graph the two bars would be
close to each other, and at a low value). As the Figure shows, DISC is somewhat earlier than SIUM and
on average that decision is very close to the final decision it makes, but it pays for this in a higher edit-
overhead. When looking at first-final, SIUM is not that far away from DISC, but nevertheless, the new
model beats the baseline across the board (and, as shown in Table 1, is also correct more often). DISC

produces less stable predictions, which is presumably due to its response to the expression being a simple
summation of the responses to its component words, whereas SIUM is a proper update model.

5 Further Analysis

We analysed several individual word classifiers to determine how well their predictions match assump-
tions about their lexical semantics. For example, the classifier for the word links (left) should yield a high
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% edit
overhead
utt length DISC SIUM

1-6 11.5 3.8
7-8 19.76 17.2
9-14 41.0 27.5
% never
correct
utt length DISC SIUM

all lengths 19.5 32.0

Table 1: % edit overhead
and never correct

DISC, 1-6

DISC, 7-8

DISC, 9-14

SIUM, 1-6

SIUM, 7-8

SIUM, 9-14

percentage into referring expression
0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

71.0 %

57.1 %

61.0 %

62.0 %

46.6 %

46.6 %

58.4 %

47.3 %

52.7 %

50.0 %

44.2 %

45.9 %

First-Correct Final

Figure 8: Incremental Performance

probability when given an object representation where the x-coordinate values are small (i.e., on the left
of the screen), and lower probabilities for x values that are high. This was indeed the case, as shown in
Figure 9. This is a nice feature of the model, as objects that are in the middle of the scene can still be
described as on the left, albeit with a lower probability. We also tested how well classifiers were learned
for colour words. In Figure 10 we show how changing the H S V features (representing colors) across
the spectrum, keeping all other object features stable, yielded different responses from the classifier for
the word gelb (yellow), where the y-axis on the figure represents probability for that particular colour
value.3

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0
links

Figure 9: Strength of word links (German
for left) predicting when given different x-
coordinate values, the y-axis represents the
probability of that point being left.
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0.8

1.0
gelb

0 50 100 150 200 250

0.5

0.0

0.5

1.0

1.5

Figure 10: Strength of word gelb (German for yellow)
predicting when given different color (HSV) values.

We further looked into shape words. Figure 11 shows the response of the classifier for kreuz (cross)
when given object representations where only the shape-related features (number of edges, skewness)
were varied across all possible shapes (the x-axis uses here the standard labeling of pentomino pieces
with letters whose shapes are similar). Interestingly, the classifier generalised the word to apply not only
to objects with the cross shape, but also the Z-shape piece (the red piece in the bottom of the top right
group in Figure 4) and others which also intuitively seem to be more similar. For a sanity check, we
looked at the responses to change in colour for the word kreuz. As Figure 12 shows, this classifier does
not pick out any specific color, as it should be. This shows that the word classifier managed to identify
those features that are relevant for its core meaning, ignoring the others.

3There is also a high probability in the black region. It could be the case that the yellow classifier learned that a low value
for B is highly discriminative (black is 0 for all RGB values).
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Figure 11: Strength of word kreuz (German for
cross) predicting when given different values of
number of edges.
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Figure 12: Strength of word kreuz (German for
cross) predicting when given different color (RGB)
values.

6 Conclusion

We presented a model of reference resolution that learns perceptually-grounded semantics from rela-
tively low-level, computer vision-based features, rather than from pre-defined sets of object properties
or ontologies. We tested the model and found that it worked well for the Pentomino corpus, despite
having a very simple notion of compositionality. The model is discriminative and outperforms a genera-
tive approach applied the same data. The model fused well with additional modalities, namely gaze and
deixis, providing improved results in a reference resolution task. Perhaps best of all, the model is simple:
besides the scenes and referring expressions, one only needs to know what object was referred in each
scene in order to train the model, which is generally easy to annotate.

For future work, we will apply more principled methods of compositionality. We also plan to apply
the model to a more systematic test of how well it performs under varied strengths of image distortion.
We further plan on applying the model in a real-time multimodal learning scenario, using video images
of real objects.
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