
Proceedings of the 11th International Conference on Computational Semantics, pages 283–293,
London, UK, April 15-17 2015. c©2015 Association for Computational Linguistics

Simple Interval Temporal Logic for Natural
Language Assertion Descriptions

Reyadh Alluhaibi
The University of Manchester, UK
alluhair@cs.man.ac.uk

Abstract

SystemVerilog assertion (SVA) is widely used for verifying properties of hardware designs. This
paper presents a new method of generating SVAs from natural language assertion descriptions. For
capturing the temporal semantics in natural language descriptions, we develop a new logical form
called simple interval temporal logic (SIT L) which can deal formally with temporal constructions
such as temporal prepositions. Furthermore, SIT Lmakes the transformations from natural language
descriptions to SVAs possible. Thus, we build transformation rules to map our logic into SVAs. Our
systematic experimental investigation on AXI bus protocol in ARM (2010) suggest that our method
is applicable for generating SVAs from natural language descriptions.

Keywords: Temporal semantics; temporal prepositions; natural language descriptions; SystemVerilog assertions

1 Introduction

Formal verification is the process of checking whether a design fulfils certain requirements (properties).
In the last decade, one major challenge in the area of formal verification has been to reduce the effort
required to design hardware systems (Darringer, 1988; Milne, 1993). SVA is one of the formal verifica-
tion tools used for verification finite state concurrent systems such as sequential circuit designs. SVA is a
linear temporal logic which can express temporal behaviours of the system designs. In fact, SVA allows
complex temporal relations between signals to be expressed in a concise and accurate way. However,
capturing the required temporal behaviours of the design requires a precise temporal description in SVA.

Therefore, several attempts have been made to generate formal system requirements from natural
language specifications in (Clarke et al., 1986; Holt, 1999; Grover et al., 2000; Harris, 2013). The moti-
vations of these approaches are to reduce design time and errors and also to help us to have early iden-
tifications of incomplete and inconsistent specifications. Unfortunately, generating formal requirements
from natural language specifications is still limited because most such approaches fail to capture certain
temporal expressions commonly occurring in natural language specifications such as tenses, aspects, and
temporal prepositions.

Of course, various linguists have attempted to provide formal semantics for certain temporal ex-
pressions in natural language (e.g. Reichenbach, 1947; Vendler, 1967; Dowty, 1972). Most approaches,
(such as in Reichenbach (1947)), focus on tenses and are not readily applicable to hardware specifica-
tions, since, most of such specifications must be written in the present tense. Admittedly, the studies of
aspectual classes (Vendler, 1967; Dowty, 1972) are useful when considering the temporal behaviours of
natural language descriptions; however, in practice, these aspectual classes are not an essential require-
ments for generating SVAs.

In contradistinction to these linguistic studies, there is a logical form that can provide the formal
semantics for temporal proposition phrases — temporal preposition logic (T PL) which is one of the
more recent interval logics as introduced in Pratt and Francez (2001). However, T PL is more expressive
than SVA. Thus, this paper seeks to remedy these problems by finding a simpler way to translate natural
language assertion descriptions featuring temporal expressions to SVAs directly. Our new logic SIT L

283

under some assumptions can be translated to SVA. SIT L is a subset of T PL. Although T PL is more
expressive than SIT L, SIT L can capture most temporal constructions that are described in natural
language assertion descriptions. We hope in this paper to provide a method that is more precise and
efficient in formal verifications than the previous attempts of Harris (2013).

The structure of the paper as follows. Section 2 introduces the basic definitions and notation of T PL
and SVA. Section 3 introduces the syntax and semantics of SIT L as well as its benefits of capturing
temporal expressions. Section 4 shows a method for generating SVAs from natural language descriptions.
The experimental methods and results are presented in Section 5. Section 6 reviews the techniques for
generating formal specifications from natural language specifications and the effects of aspectual classes
on the semantics of SVAs and Section 7 concludes the paper.

2 Preliminaries

2.1 Temporal Preposition Logic (T PL)

In this section, we recall the semantics of T PL presented in Pratt-Hartmann (2005). T PL is a first-order
language having variables which range over time-intervals and predicates corresponding to event-types
and temporal order-relations. In this paper, the letters I, J with or without decorations, range over time
intervals, where an interval is closed, bounded, non-empty subset of real numbers. Let us review the
semantics of T PL using examples from natural language assertion descriptions. Consider the sentences:

(1) Awid is asserted

(2) Awid is asserted during every cycle

(3) Awid is asserted during every cycle until Awvalid goes high.

Sentence (1) states that, within the temporal context, there is an interval over which Awid is asserted.
The meaning of (1) can be represented as follows:

(4) ∃J0(asserted(Awid, J0) ∧ J0 ⊆ I).

Notice that the quantification of J0 is limited to the temporal context which represented by the free
variable I. Sentence (2) states that, within the temporal context I, every interval over which a cycle occurs
includes an interval over which Awid is asserted. The meaning of (2) can be represented as follows:

(5) ∀J1(cycle(J1) ∧ J1 ⊆ I→ ∃J0(asserted(Awid, J0) ∧ J0 ⊆ J1)).

Notice that cycle is considered in Pratt and Francez (2001) as a temporal noun which has an interval time
such as meeting, Monday, and 1995. Thus, the meaning of cycle should be as follows:

(6) λJλI[cycle(J)∧ J ⊆ I],

Intuitively, the word “cycle” picks out those intervals J over which a cycle occurs with some temporal
context I as shown in Formula (5).

Some events take place not during, but before or after various time-intervals. Thus, we need to define
some functions that can express these relationships.

Definition 2.1. Let I = [a,b] and J = [c,d] be intervals. If a < c < d < b, we let the terms init(J,I) and
fin(J,I) denote the intervals [a,c] and [d,b], respectively, where init and fin are partial functions to denote
the initial segment of I up to the beginning of J, and the final segment of I from the end of J, respectively.
Finally, we denote the definite quantifier ı with the standard (Russellian) semantics ı(ψ,ψ′).

Now, we can expresses sentence (3) in T PL as follows:

284

(7) ıJ2(high(Awvalid, J2) ∧ J2 ⊆ I,
∀J1(cycle(J1) ∧ J1 ⊆ init(J2,I)→ ∃J0(asserted(Awid,J0) ∧ J0 ⊆ J1))).

This formula states that, within the temporal context I, there is a unique interval J2 such that Awvalid
goes high at J2 and every interval J1 such that J1 is a cycle and J1 is contained init(J2,I), which in turn
includes an interval J0 over which Awid is asserted.

In this section, we have given a flavour of the language T PL. For a complete specification, we refer
the reader to Pratt and Francez (2001).

2.2 SystemVerilog Assertions (SVA)

SVA is a subset of SystemVerilog which combines hardware descriptions and formal verifications. As-
sertions formally verify the correctness of the specifications. SVA has the ability to define sequential
expressions with clear temporal relationships between them. These temporal relationships are expressed
by one or more clocks. For example, assertion (8) checks that the signal “AWID” is high at every posedge
clock. If the signal “AWID” is not high at any posedge clock, the assertion will fail.

(8) sequence s1;
@(posedge clk) AWID;
endsequence.

In SVA, the clock cycle delays are defined by a “##” sign and there are two types of delays possible,
a single delay or a range of delays. Consider

(9) AWID ##2 AWVALID

(10) AWID ##[1:4] AWVALID.

Assertion (9) states that the signal “AWID” is true at the point of evaluation, and must remain true
for next clock cycle before the single “AWVALID” will be true, while assertion (10) states that the signal
“AWID” is true, and may remain true for up to 3 further clock cycles, directly after which the single
“AWVALID” will be true. Note that we can specify an assertion with infinite repetition range such as in
(11) where the $ symbol indicates that the signal “AWVALID” will eventually occur.

(11) AWID ##[1:$] AWVALID.

Furthermore, there are two types of implication in SVA: an overlapped implication and a non-
overlapped implication. The overlapped implication is denoted by the symbol | −> while the non-
overlapped implication is denoted by the symbol |=> as shows, respectively.

(12) AWID |−> AWVALID

(13) AWID |=> AWVALID.

Assertion (12) states that if the antecedent “AWID” holds, then the consequent expression “AW-
VALID” starts in the same clock cycle. On other hand, assertion (13) states that if the antecedent “AWID”
holds, then the consequent expression “AWVALID” starts in the next clock cycle. Note that assertion
(13) can be expressed differently using a “##” sign as shown below in (14) where ##1 means a delay of
one clock cycle before the consequent expression “AWVALID” is started.

(14) AWID |−> ##1 AWVALID.

Moreover, SVA has sequential binary operators such as “and” and “or” operators which works with
two sequences or boolean expressions. The “and” operator means that if both two sequences or boolean
expressions are true, then the result of “and” operation is true. However, the resultant of the “or” operands
is true whenever at least one of sequences boolean expressions is true. Consider

285

(15) AWID and AWVALID

(16) AWID or AWVALID.

Assertion (15) will be only true if both signals “AWID” and “AWVALID” are true; on other hand,
the result of assertion (16) is true when either signal AWID or signal AWVALID is true.

All of the above-mentioned operators will be used for constructing transformation rules between
SIT L and SVA. For a more detailed account of SVA refer to Vijayaraghavan and Ramanathan (2006).

3 Simple Interval Temporal Logic (SIT L)

We define SIT L as a subset of T PL . Both logics work well for capturing temporal expressions in
English. However, we choose SIT L over T PL because it is more applicable for generating SVA.

A SIT L language L is a triple (C,P,F) of sets of constant symbols, predicate symbols, and functional
symbols. Note, each predicate symbol and functional symbol must be assigned to non-zero natural
number which represents its arity. A term is a variable or a constant. Also, if f is a function symbol of
arity n and t1 , . ., tn are terms, then f (t1 , . . . , tn) is a term.
SIT L-formula ψ is defined by the Backus-Naur Form production rule as follows.
ψ:= > | ⊥ | ¬ψ | ψ ∧ ψ′ | ψ ∨ ψ′ | P(t1 , . . . , tn) | Q.TP(ψ,ψ′).

Here >, ⊥, ¬, ∧, and ∨ have the same meaning as in first-order logic, P is a predicate symbol of arity n
and t1 , . ., tn are terms; TP is a binary predicate symbol that only corresponding to temporal prepositions
such as when, after, before, and until. Note, TP is not a standard formulation of logic which means here
if ψ and ψ′ are formulas, then Q.TP(ψ,ψ′) are formulas too where Q denotes any type of quantifiers
(such as universal, existential or definite quantifier) and “TP(ψ,ψ′)” is restricted by Q. For example, a
formula like “ı.when(ψ, ψ′)” means that ψ and ψ′ are bounded by the definite quantifier ı.

3.1 Semantics

We define SIT L based on T PL introduced by Pratt-Hartmann (2005) as follows:

(17) [ı.when(ψ, ψ′)]#(I) = ıJ([ψ]#(J) ∧ J⊆ I , [ψ′]#(J));

(18) [ı.before(ψ, ψ′)]#(I) = ıJ([ψ]#(J) ∧ J⊆ I , [ψ′]#(fin(J,I));

(19) [ı.after(ψ, ψ′)]#(I) = ıJ([ψ]#(J) ∧ J⊆ I , [ψ′]#(init(J,I));

(20) [ı.until(ψ, ψ′)]#(I) = ıJ([ψ]#(J) ∧ J⊆ I , [ψ′]#(init(J,I));

(21) [ı.until after(ψ, ψ′)]#(I) = ıJ([ψ]#(J) ∧ J⊆ I , [ψ′]#(init(J,fin(J,I))));

(22) [Q.during(ψ, ψ′)]#(I) = QJ([ψ]#(J) ∧ J⊆ I , [ψ′]#(J));

(23) [∃.for(ψ, ψ′)]#(I) = ∃J([ψ]#(J) ∧ J⊆ I ∧ [ψ′]#(J)).

First of all, the temporal prepositions in (17-21) require their complements to be definitely quantised
since these readings are suitable for many cases in natural language descriptions. Second, the temporal
preposition during in (22) is located ψ′ to be within the interval of ψ where the quantification to restrict
its complement is not decided. Finally, the temporal preposition for in (23) enforces its complement to
be existentially quantified. These quantification restrictions on temporal preposition phrases have been
discussed in Pratt and Francez (2001), which drew attention to the fact that some temporal prepositions
impose restrictions on the temporal quantification appearing in their complements.

Taking the prepositions until and until after into consideration as expressed in (20) and (21), it is
worth noting that out interpretation are different from T PL. In T PL, the preposition until universally
quantifies its modificands explicitly. We leave this quantification implicit for simplification purpose
which as stated before facilitates the generation of SVA. SIT L is therefore constructed to consider
interpretation of temporal prepositions that are required for the generation of correct SVAs.

286

3.2 Interpretation of SIT L in English

In this section, we provide an interpretation of SIT L in English involving temporal constructions. The
purpose of SIT L is to have a subset of T PL that is closer in expressive power to common constructions
encountered natural language specifications. Consider

(24) Awid must remain stable when Awvalid is asserted.

which can be expressed in SIT L and T PL, respectively, as follows:

(25) ı.when(asserted(Awvalid), stable(Awid))

(26) ıJ1(asserted(Awvalid, J1) ∧ J1 ⊆ I, ∃J0(stable(Awid, J0) ∧ J0 ⊆ J1)).

Both formulas have the same meaning, namely, that, within the temporal context I, there is a unique
interval J over which Awvalid is true which includes an interval over which Awid is true. However,
SIT L formula (25) is less expressive than T PL formula (26) in which SIT L can easily transform to
SVA such as (27) for formula (25). The transformations from SIT L to SVA will be discussed later.

(27) AWVALID |−> $stable(AWID).

More interpretations can be provided here with temporal prepositions such as after and before. Con-
sider the following sentences

(28) Awid must be low after Awvalid goes high

(29) Awid must be low before Awvalid goes high.

Both sentences can be expressed in SIT L as follows, respectively.

(30) ı.after(high(Awvalid), low(Awid))

(31) ı.before(high(Awvalid), low(Awid)).

Formula (30) states that when the signal Awvalid goes high, the signal Awid must be low in the
next cycle. Formula (31) states that before the signal Awvalid goes high, the signal Awid must be low.
Thus, SIT L defines events and their temporal locations correctly which enable us to easily map SIT L
formula into SVA as shown in (32) and (33) for (30) and (31), respectively.

(32) AWVALID |−> ##1 !AWID

(33) !AWID |−> ##1 AWVALID.

Furthermore, SIT L can interpret complex temporal expressions that occur in natural language as-
sertion descriptions. Consider

(34) When Awvalid is asserted, Awid must remain low until Awready goes high.

Sentence (34) has a complicated meaning since it includes two temporal prepositions when and until.
Thus, we need to interpret it based on the most natural reading which here means the semantics of until
must be restricted by the semantics of when as follows.

(35)

When︷ ︸︸ ︷
ı.when(asserted(Awvalid),

until︷ ︸︸ ︷
ı.until(high(Awready), low(Awid))).

287

In order to explain our interpretation in SIT L, consider the following T PL formula

(36) ıJ2(asserted(Awvalid, J2) ∧ J2 ⊆ I, ıJ1(high(Awready, J1) ∧ J1 ⊆fin(J2, I),
∀J0(J0 ⊆ init(J1, fin(J2, I))→ low(Awid, J0)))),

which states that within the temporal context I, there is a unique interval J1 such that Awvalid is asserted
at J1 and there is a unique interval J0 such that J0 is a subset of fin(J1,I) and Awready is high at J0 and
Awid must be low during init(J0,fin(J1,I)). Notice, (36) is not constructed of using rules (17) and (20)
in Section 3.1. The complexities of when in conjunction with until require us to define a special rule as
shown in (37), where locates the temporal relation between them correctly.

(37) [ı.when(ψ, ı.until(ψ′, ψ′′))]#(I) = ıJ1([ψ]#(J1) ∧ J1 ⊆I , ıJ0([ψ′]#(J0) ∧
J0 ⊆fin(J1,I) , [ψ′′]#(init(J0,fin(J1,I))))).

Even if we change the order of sentence (34) as in the following example, we can only have the
interpretation (35), that in which the semantic of when has wider scope than the semantic of until because
in our method we do not intend to embed temporal prepositions; therefore we will allow them in ordering
which they appear.

(38) Awid must remain low until Awready goes high when Awvalid is asserted.

In the end, we have shown the interpretations of SIT L in requirement examples that were taken
from ARM (2010) and how precise SIT L is for specifying these requirements including temporal con-
structions. Then, we have explained how SIT L can eliminate the complexity which can be caused by
temporal prepositions. In the next section, we will show how can be possible to translate SIT L to SVA
using transformations rules.

4 Generating SystemVerilog Assertions

In this section, we describe a method for generating SVA from natural language descriptions. Our method
will be divided into two distinct steps. First, we extract SIT L from a parse tree using semantic rules
and then we generate SVA from SIT L using transformation rules.

4.1 Semantic Rules for Extracting SIT L
We build our semantic rules based on combining typed logic with lambda abstraction. This method de-
fined in Montague (1974), which has been used globally to build semantic representations for a fragment
of English. First of all, we use a wide coverage parser that produces Penn tree-bank style parse trees.
Then, we take parse trees from the adopted parser and we apply our semantic rules to extract SIT L
from the parse trees such as in Figure 1 for sentence (24).

Notice that in Figure 1, the modal auxiliary (MD), the verb in base form (VB), and the auxiliary verb
(AUX) are ignored when followed by the “VP” or “ADJP” because such constructions lead to redundancy
if we attempt to represent every category. More importantly, most existing parsers attach the “SBAR”
category to the “VP” category instead of the “S” category, which causes difficulties when handling the
scope of temporal quantifications. Therefore, we handle this issue by moving up the “SBAR” category
as shown in Figure 1 to be combined with the “S0” category to extract SIT L precisely.

We have constructed 176 semantic rules to extract SIT L. Each terminal or non-terminal node has a
semantic rule based on its part of speech tag. These rules are limited to our case study which might be
extended in the future work. This step was made specifically to support our theory about how easy it can
be to generate SVA from SIT L than other logical forms as explained in Section 3.2.

288

S1

ı.when(asserted(awvalid),stable(awid))

SBAR
λq[ı.when(asserted(awvalid),q)]

S
asserted(awvalid)

VP
λx′[asserted(x′)]

VP
λx′[asserted(x′)]

VBN
λx′[asserted(x′)]

AUX
is

NP
awvalid

NNP
awvalid

WHADVP
λpλq[ı.when(p,q)]

WRB
λpλq[ı.when(p,q)]

S0

stable(awid)

VP
λx[stable(x)]

VP
λx[stable(x)]

ADJP
λx[stable(x)]

JJ
λx[stable(x)]

VB
remain

MD
must

NP
awid

NNP
awid

Figure 1: The annotated parse tree corresponds to semantic rules

4.2 Transforming SIT L to SVA

This step is about generating SVA from SIT L using transformation rules. These rules were constructed
using all the possible interpretations of temporal expressions in SVA from ARM (2010) and Vijayaragha-
van and Ramanathan (2006). The transformation rules take SIT L as an input and produce its equivalent
in SVA. Generating SVA from SIT L will turn out to be straightforward because using SIT L helps to
reduce the difficulties of mapping natural language assertion descriptions to SVAs. The transformation
rules are defined as follows:

1. [ı.when(ψ,ψ′)]# = ([ψ]# |−> [ψ′]#);
2. [ı.before(ψ,ψ′)]# = ([ψ′]# |−> ##1 [ψ]#);
3. [ı.after(ψ,ψ′)]# = ([ψ]# |−> ##1 [ψ′]#);
4. [ı.until(ψ,ψ′)]# = ([ψ′]#[∗0 : $] ##1 [ψ]#);
5. [ı.until after(ψ,ψ′)]# = ([ψ′]#[∗0 : $] ##0 [ψ]#);
6. [∃.for(N, ψ)]# = ([ψ]#[∗N]#).

The transformation rule (1) maps ψ and ψ′ into SVA as an overlap relation. In the transformation
rule (2), ψ and ψ′ maps into SVA where ψ′ must occur a cycle before ψ is true, while the transformation
rule (3) is inverse of (2). The transformation rule (4) maps ψ and ψ′ into SVA where ψ′ must occur
until the cycle before ψ is true, while in the transformation rule (5), ψ′ must remain true until ψ is
completed. In addition to transformation rules (4) and (5), the temporal preposition until frequently
comes with another temporal prepositions such as when, during, and after. For example, assertion
(39) is constructed by combining the transformation rule (3) with the transformation rule (4) which here
means after ψ comes true, ψ′′ must remain true until ψ′ occurs.

(39) (

after︷ ︸︸ ︷
[ψ]# |−> ##1

until︷ ︸︸ ︷
[ψ′′]#[∗0 : $] ##1 [ψ′]#).

Finally, the transformation rule (6) is related to the preposition for which takes only numerical ex-
pressions as its complement such as one cycle, two cycles, and etc which denote number of repetitions.
For example, sentence (40) indicates that after the signal “Awid” is true, Awvalid must be low for two
consecutive cycles as shown in assertion (41).

289

(40) Awvalid is low for two cycles after Awid goes high.

(41) AWID |−> ##1 !AWVALID[∗2].

Having discussed how to translate SIT L into SVA involving temporal prepositions, there are other
categories need to be translate into SVAs such verbs, adjectives, and noun phrases. Thus, we have
collected the most common words in natural language descriptions from ARM (2010). Then, we assigned
each word a link to a particular SVA’s term. For example, the adjectives “stable” and “constant” are linked
to a keyword “$stable”. Table 1 shows some common words in SIT L and their formal terms in SVA.

SITL SVA
verb

7 has/have/use/require(ψ, ψ′) ψ |−> ψ′

8 ¬exceed(ψ, ψ′) ψ <= ψ′

9 be/set(ψ, ψ′) (ψ==ψ′)
10 asserted/permitted(ψ) ψ
11 ¬de-asserted/¬permitted(ψ) !ψ
12 ¬be(ψ, ψ′) (ψ!=ψ′)

Adjectives
13 stable/constant(ψ) $stable(ψ)
14 high(ψ) ψ
15 low(ψ) !ψ
16 greater(ψ, ψ′) (ψ > ψ′)
17 equal(ψ, ψ′) (ψ=ψ′)
18 less(ψ, ψ′) (ψ < ψ′)

SITL SVA
Conjunction and Disjunction

19 ψ ∨ ψ′ (ψ or ψ′)
20 ψ ∧ ψ′ (ψ and ψ′)

Preposition
21 on(ψ, ψ′) (ψ==ψ′)
22 with(ψ, ψ′) (ψ==ψ′)

Noun phrases or signals
23 write burst (AWBURST==AXI−ABURST−INCR)
24 read burst (ARBURST==AXI4PC−ABURST−INCR)
25 write transaction AWBURST
26 read transaction ARBURST
27 data−width parameter DATA−WIDTH
28 awvalid AWVALID
29 awid AWID

Table 1: Transformation rules for some common words.

As shown in Table 1, it is necessary that we link each word with its SVA’s term in our transformation
rules; otherwise the output will not have the correct transformations.

What follows is a description of how our transformation rules can be an efficient method for gener-
ating SVAs. To illustrate how we perform our transformations, we execute it on example (25). The steps
below show how SVA can be generated from SIT L formula using our transformation rules.

[ı.when(asserted(Awvalid), stable(Awid))]# = [asserted(Awvalid)]# |−> [stable(Awid)]# (rule 1);

[asserted(Awvalid)]# |−> [stable(Awid)]# = [Awvalid]# |−> [stable(Awid)]# (rule 10);

[Awvalid]# |−> [stable(Awid)]# = AWVALID |−> [stable(Awid)]# (rule 28);

AWVALID |−> [stable(Awid)]# = AWVALID |−> $stable([Awid]#) (rule 13);

AWVALID |−> $stable([Awid]#) = AWVALID |−> $stable(AWID) (rule 29).

In summary, we described a method for translating SIT L to SVA. This method enables us to trans-
late most SIT Ls into SVAs. Next section will show experimental results that demonstrate the perfor-
mance of our method.

5 Experimental Methods and Results

To evaluate the ideas discussed in this paper empirically, we collected documents from ARM (2010)
for verification of the AXI bus protocol. These documents contain a large number of SVAs specifying
system requirements together with English comments explaining their meaning. We took the English
comments and we parsed them using Charniak’s parser (Charniak, 2000) to produce parse trees. Then,
we extracted SIT L from parse trees via semantic rules as explained in Section 4.1. Finally, we generated
SVAs from SIT L using our transformation rules that described in Section 4.2. The total number of such
comments is 397 SVAs. Our program contains 83 transformation rules and approximately 2374 words
with their logical forms in SVA. Most of these words are noun categories where approximately 65%
of the words are automatically generated, and approximately 35% are manually written such as words
(23-27) in Table 1.

290

In this paper, we compare our results with those obtained by ARM (2010). We consider our asser-
tion results are true when they are identical to the originals or having the same meaning but different
expressions since temporal behaviour sequences can be expressed in more than one way. As outcomes,
we found our program successfully generated SVAs for 297 out of 397, or 74.81% of all assertions.
Thus, our method can be useful for generating SVA which reduces design time and errors. A second
point to make is that by observing the given results, the relation between the English comments and their
equivalent meaning in SVA is not complex, but rather is straightforward mapping that only need a proper
formal logic featuring temporal expressions such as SIT L.

Of course, our program does not work in every case. Consider

(42) A sequence of locked transactions must use a single ID.

where the expression “a sequence of locked transactions” corresponds to multiple signals which must
use the “single ID” in a special order which can not be defined from a theoretical standpoint; unless if we
use a practical approach which would not be sufficient here. Thus, our program failed to generate SVAs
in three circumstances, (i) when it is difficult to determine the meaning of their lexical items in SVA
as shown in (42), (ii) when sentences contain words that are not introduced in the transformation rules
before running our system as explained in Section 4.2, and finally (iii) when the adopted parser gives a
wrong parse tree in which case no result is computed. Note that the third limitation is due to the chosen
parser which can be solved with a better parser.

6 Related Work

6.1 Specifications in Natural Languages

One of common ways to generate formal specifications from natural language specifications is to use
natural language processing techniques which help engineers to express system requirements with un-
restricted language such as in (Osborne and MacNish, 1996; Lamar, 2009). However, although natural
language processing techniques provide very respectable accuracies for real-world texts by using part-
of-speech taggers and syntactic parsers, these approaches may produce multiple syntactical parses which
may not be plausible at the interpretation level to eliminate the ambiguous one.

Therefore, Grover et al. (2000) and Fuchs et al. (2008) use a controlled natural language (CNL) to
deal with ambiguities of natural languages. CNL is a subset of natural language with a restricted syn-
tax and semantics in order to reduce or eliminate ambiguity and complexity of natural languages. CNL
based-tools have been used in many areas such as software and hardware specifications, specifications
of legal contracts, and business rule specifications. For example, Fuchs et al. (2008) uses CNL to pro-
vide a knowledge representation language in several application domains and to translate CNL’s texts to
discourse representation structures and first-order logic. However, most of such approaches fail to cope
with natural language specifications featuring temporal constructions.

In the case of expressing temporal constructions, Clarke et al. (1986) uses a controlled English tool to
convert English specifications into computation tree logic (CTL) which is used as a logical representation
for hardware verification. Although CTL is commonly used for specifying temporal properties of finite-
state systems, most of these approaches are not expressive enough to capture the semantics of temporal
prepositions in natural language descriptions.

A more practical approach for capturing SVAs from natural language descriptions is presented in
Harris (2013). This approach uses an attribute grammar approach (Engelfriet, 1984) to generate SVA.
However, it fails to discuss the issues of temporal constructions in natural language descriptions. This
approach offers generally a suitable way to generate SVAs from natural language requirements. On other
hand, our method aims to be more focused on specifying temporal expressions in natural language asser-
tion descriptions and provides an efficient method for generating SVAs involving temporal behaviours.

291

6.2 Aspectual Class

Over the past decade researchers have investigated the effects of aspectual classes of verb phrases in
natural language semantics. Vendler (1967) and Dowty (1972) have worked to build a taxonomy of
temporal-event descriptions to provide better descriptions of how people describe events in our language.
For example, Vendler (1967) has classified verbs into four aspectual classes – states, activities, achieve-
ments and accomplishments – in order to provide the way in which verbs can be viewed with respect to
time. However, the effects of these aspectual classes on generating SVAs are limited because any tempo-
ral expression at verb phrase level is restricted by the semantics of temporal prepositions. Moreover, in
practice, any SVA must be checked in every clock cycle regardless what its value in the previous clock
cycle. Consider

(43) When Awid is low, Awvaild is high.

(44) When Awid goes low, Awvaild goes high.

Sentence (43) has a state verb in when’s complement, whereas sentence (44) has an event verb. The
meanings of both sentences are different in literature. In sentence (43), “Awid is low” means that it is
started before the current interval, while in sentence (44), “Awid goes low” means that it is started at
the current interval. However, in SVA, both mean the same since both antecedent expressions will be
checked at every posedge clock. Therefore, there is not going to be any gain from the studies of aspectual
classes since state and event verbs are treated similarly in the domain of interest.

However, by examining the temporal semantics of some natural language descriptions, we found
some surprising insights from the semantics of temporal prepositions with aspecual classes. For example,
some temporal prepositions are constrained in respect of the event types (activities, achievements or
accomplishments) they can take as arguments. Consider

(45) ∗ Awid is low after Awvaild is high.

(46) Awid goes low after Awvaild goes high.

Sentence (45) is odd because after preposition resists to take a state verb in its complement. However,
sentence (46) is a correct statement because after preposition can take an event verb in its complement.
Note, these restrictions are also applied to until, until after, and before prepositions. On other hand,
when or while does not have these restrictions in which both can have either a state or an event in their
complements such as in (43) and (44). Finally, we can say aspectual classes can help us to provide
legal grammatical constructions of various sentence forms and their interactions with different temporal
prepositions. In this paper, we do not intend to take aspectual classes into consideration in our tool
because our goal is to eliminate any unnecessary complexity for usability purposes.

7 Conclusion

We presented a method for translating natural language assertion descriptions into SVAs based on SIT L.
We have constructed SIT L using T PL. We first showed some interpretations of SIT L in English and
then we presented transformation rules for mapping SIT L to SVAs. We developed a small program for
verifying our method on AXI bus protocol in ARM (2010). Our experimental results suggest that using
SIT L as a logical representation for capturing SVAs featuring temporal expressions can enable us to
have more accurate and effective results than existing tools.

In the future, we plan to extend SIT L to handle other temporal constructions such as prepositions
specifying durations – e,g. in, within, or throughout – or prepositions specifying particular points in time
– e,g. by or since. This extension will enhance the performance of our method by representing more
temporal constructions, and generate their equivalent meaning in SVA.

292

References

ARM, A. (2010). Axi protocol specification (rev 2.0). Available at http://www. arm. com.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the 1st North American
chapter of the Association for Computational Linguistics conference, pp. 132–139. Association for
Computational Linguistics.

Clarke, E. M., E. A. Emerson, and A. P. Sistla (1986). Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages and
Systems, 8(2), 244–263.

Darringer, J. A. (1988). The application of program verification techniques to hardware verification. In
Papers on Twenty-five years of electronic design automation, pp. 373–379. ACM.

Dowty, D. R. (1972). Studies in the logic of verb aspect and time reference in English. Department of
Linguistics, University of Texas at Austin.

Engelfriet, J. (1984). Attribute grammars: Attribute evaluation methods. Methods and tools for compiler
construction, 103–138.

Fuchs, N. E., K. Kaljurand, and T. Kuhn (2008). Attempto Controlled English for knowledge represen-
tation. In Reasoning Web, pp. 104–124. Springer.

Grover, C., A. Holt, E. Klein, and M. Moens (2000). Designing a controlled language for interactive
model checking. In Proceedings of the Third International Workshop on Controlled Language Appli-
cations, pp. 29–30.

Harris, I. G. (2013). Capturing assertions from natural language descriptions. In Natural Language Anal-
ysis in Software Engineering (NaturaLiSE), 2013 1st International Workshop on, pp. 17–24. IEEE.

Holt, A. (1999). Formal verification with natural language specifications: guidelines, experiments and
lessons so far. South African Computer Journal, 253–257.

Lamar, C. (2009). Linguistic analysis of natural language engineering requirements.

Milne, G. J. (1993). Formal specification and verification of digital systems. McGraw-Hill, Inc.

Montague, R. (1974). Formal philosophy; selected papers of Richard Montague.

Osborne, M. and C. MacNish (1996). Processing natural language software requirement specifications.
In Requirements Engineering, 1996., Proceedings of the Second International Conference on, pp.
229–236. IEEE.

Pratt, I. and N. Francez (2001). Temporal prepositions and temporal generalized quantifiers. Linguistics
and Philosophy 24(2), 187–222.

Pratt-Hartmann, I. (2005). Temporal prepositions and their logic. Artificial Intelligence 166(1), 1–36.

Reichenbach, H. (1947). The tenses of verbs.

Vendler, Z. (1967). Linguistics in Philosophy. Cornell University Press.

Vijayaraghavan, S. and M. Ramanathan (2006). A practical guide for SystemVerilog assertions. Springer.

293

