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Abstract

The growing size, heterogeneity and complexity of databases demand the creation of strategies to

facilitate users and systems to consume data. Ideally, query mechanisms should be schema-agnostic,

i.e. they should be able to match user queries in their own vocabulary and syntax to the data, ab-

stracting data consumers from the representation of the data. This work provides an information-

theoretical framework to evaluate the semantic complexity involved in the query-database commu-

nication, under a schema-agnostic query scenario. Different entropy measures are introduced to

quantify the semantic phenomena involved in the user-database communication, including structural

complexity, ambiguity, synonymy and vagueness. The entropy measures are validated using natural

language queries over Semantic Web databases. The analysis of the semantic complexity is used

to improve the understanding of the core semantic dimensions present at the query-data matching

process, allowing the improvement of the design of schema-agnostic query mechanisms and defining

measures which can be used to assess the semantic uncertainty or difficulty behind a schema-agnostic

querying task.

Semantic Complexity, Entropy, Schema-agnostic Queries, Database Queries, Databases

1 Introduction

The growing data availability on Big Data environments demands the creation of strategies to facilitate

the interaction between data consumers and databases. As the number of available data sources grows

and schemas increase in size and complexity, the effort associated with matching an information need to

a database schema, intrinsic to the creation of structured queries such as SPARQL and SQL, becomes

prohibitive. Ideally, data consumers, being them humans or intelligent agents, should be able to be

abstracted from the representation of the data by using a schema-agnostic query mechanism [6].

However, structured queries are still the primary way to interact with databases. Despite the evolution

of natural language interfaces (NLIs), and the empirical evaluation behind different NLI approaches, rel-

atively little attention is given to the analysis of the semantic phenomena behind the user-database com-

munication (UDC). The construction of semantic models for databases brings the potential of improving

UDC and the design of more principled schema-agnostic query mechanisms.

In this work information theoretic models are used to define measures of semantic complexity for

schema-agnostic queries. The measures of semantic complexity are used to quantify the role of core se-

mantic phenomena such as ambiguity, synonymy and matching complexity in the semantic interpretation
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of schema-agnostic queries. The contributions of this paper are: (i) to provide a principled and compre-

hensive analysis of existing semantic measures of semantic complexity in the UDC context, (ii) to vali-

date these measures over a realistic query scenario based on natural language queries over large-schema

RDF graph datasets, (iii) to introduce novel semantic complexity measures based on distributional se-

mantic models and (iv) to use the semantic complexity models to support the design of schema-agnostic

queries.

This paper is organized as follows: section 2 introduces schema-agnostic queries; section 3 intro-

duces the concept of semantic complexity and entropy; section 4 describes the schema-agnostic queries

and the associated semantic entropy model and measures; section 5 validates the model and discusses

design principles derived from the entropy measures which can be used on schema-agnostic query mech-

anisms; section 6 describes conclusions and future works.

2 Mapping Schema-agnostic Queries

Schema-agnostic queries are queries which assume that users do not know the terminology and the

structural relations inside a dataset while expressing their information needs [6, 5]. Since the query in-

formation can be represented in the database using different terms and relations, schema-agnostic queries

are intrinsically associated with a semantic matching and interpretation model. Schema-agnostic queries

can follow a natural language, keyword or a structured query syntax.

In the Information Retrieval space, different works evaluated the query performance by providing

predictors based on language models applied in the estimation of vagueness and ambiguity (clarity score

in [3]), and by improving query performance using selective pruning [15]. Sullivan [14] uses effective-

ness measures to classify 50 question narratives over unstructured text as easy or hard.

Previous works have investigated the formal conditions for mapping a natural language query to a

database. The work of Popescu et al. [12] provides a formal description of natural language interfaces to

databases, concentrating on the definition of the concept of semantic tractability. Essentially, the concept

of semantic tractability provides a description of soundness and completeness conditions for mapping

natural language queries to database elements. Comparatively, this work focuses on evaluating query

performance predictors for schema-agnostic queries on structured data, targeting addressing schema-

agnostic queries over heterogeneous databases.

3 Semantic Complexity & Entropy

The concept of entropy in information theory is defined as a measure of uncertainty or surprise asso-

ciated with a random variable. The random variable represents possibilities over the possible states or

configurations that a specific symbolic system can be in, where the entropy is directly proportional to the

number of states.

In order to transport the concept of entropy to the UDC problem, four symbolic sets are introduced:

(i) a word set W , which expresses the set of words used to describe the domain of discourse shared by

the user and database, (ii) a word sense set WS, which describes the possible senses associated with

the words, (iii) a proposition set S, to describe the possible (syntactically valid) compositions of words

senses and (iv) a concept set C, to describe the set of concepts associated with the possible interpretation

for all the compositions. The unambiguous semantic interpretation of a query I(q) or database statement

I(s) is a concept ci in the concept domain. Figure 1 depicts the relationship between the sets in the

query/database interpretation process. Ambiguity, vagueness and synonymy are defined as mappings

patterns between the four sets.

It is possible to define a set M for the semantically valid mappings between W and C under a specific

query database matching mΣ(Q, G) for a specific semantic model Σ. The semantic entropy associated

with the query-DB matching is proportional to the cardinality of M .

In the context of schema-agnostic queries, the concept of entropy can be interpreted under four main

perspectives:
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Figure 1: Mapping from words in a query to meaning (wj) to word sense (wsk), syntactic composition

(sl) and the associated concept (cm) for the statement.

• (i) structural/conceptual complexity: Databases which express a large number of concepts have

larger semantic entropy values. The number of interpretations is usually correlated to the num-

ber of distinct entities in the database and the number of possible compositions between them

(propositions).

• (ii) level of ambiguity: Words/propositions can convey different meanings. The degree of ambi-

guity (number of possible interpretations) varies for different words and propositions. Depending

on the domain of discourse and on the selection of the words, queries and databases can have

different levels of associated ambiguity.

• (iii) vocabulary gap/indeterminacy/vagueness: The interpretation of a query or of a database

statement is dependent on the ability of the data consumer (receiver) to interpret the expressed

information. Query and databases may not be expressed in the same vocabulary (synonymy phe-

nomenon) or in the same abstraction-level. Additionally, query and data may not be mapped with

the contextual information available in the query or in the database. Indeterminacy/vagueness

are semantic phenomena where words, entities or propositions fail to map to the exact meaning

intended by the transmitter.

• (iv) novelty: Semantic entropy is usually associated with the degree of novelty/informativeness/-

surprise associated with the communication process. The more informative the result returned by

a query in relation to the specific background knowledge of the query issuer, the larger the entropy

value. This dimension is not the focus of this work.

The process of mapping a schema-agnostic query Q to a database associated interpretation IG(Q)
depends on the semantic entropy associated with each entropy dimension and involves coping with the

semantic phenomena of structural complexity, term ambiguity, structural ambiguity, vagueness and syn-

onymy. The next section introduces semantic entropy measures for each of these dimensions. In the

definition of the entropy measures, a practical perspective was adopted (which focuses on the computa-

tion of these measures instead of a purely formal model) where the definition of approximate measures

take place wherever the application of the complete model is not viable or practical.

4 Semantic Entropy Measures

A generic interpretation process for a schema-agnostic query Q can be defined as a set of steps which

map a sequence of words <w0, w1, ..., wn>into a set of possible database interpretations IG(Q). It is

assumed that both query and database terminologies are defined under the same language L and that

database entities are described using natural language labels. The generic process of interpreting the

query can be summarized into the following steps with a set of associated entropy measures:
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Figure 2: Generic steps for the query processing and associated entropy measures for each step.

• Syntactic matching: Consists in the possible interpretations for the syntactic structure of the

query under the database syntax. This step consists in the segmentation of the query Q into a set

of terms <q0, q1, ..., qn>. The entropy Hsyntax expresses the syntactic uncertainty/ambiguity in

the determination of the syntactic mapping.

• Vocabulary matching: Consists in the matching/alignment between query entities and database

entities, once a syntactic structure was defined. The entropy Hvocab is the uncertainty/ambiguity

associated with the matching between query entity candidates and database entities.

Figure 2 depicts the steps in the query interpretation process and the associated entropies, while

Figure 3 depicts an example for a specific query example. In this section, to maximize generalizability

a logical (constant, predicate) terminology is used to express database statements and queries. In the

evaluation section the model is specialized into the RDF/SPARQL model.

4.1 Measures of Semantic Entropy

4.1.1 Syntactic Entropy (Hsyntax)

The syntactic entropy of a query is defined by the possible syntactic configurations in which a query

can be interpreted under the database syntax. Figure 2 and Figure 3(2) depicts Hsyntax within the query

interpretation model. The syntactic interpretation of a query Q is a tuple T = <C, Π, R, L, Op>, where

C and Π are the set of constants and predicates in the database, R → Π × C × · · · is the ordered set

of syntactic n-ary associations between C and Π, L is the set of logical operators ∧,∨ and Op a set of

functional operators.

The syntactic entropy is given as a function of the probability of the syntactic interpretation of a

query. Let Syn be the lexical categories and constituent categories associated with the set of query words

wi and terms qi. Let DM be the data model categories (e.g. C, Π, R, L, Op) in which the set of Syn cat-

egories can be mapped. Let Nsyntax(qi) be the number of possible data model categories DM in which

the query term qi was observed to be mapped in a reference alignment corpus, and count(qi → DM)
the number of observed instances of the mapping to a specific alignment qi → DM . The probability of

a term qi syntactic mapping is given by:

Psyntax(Q) =
n∏

i=0

count(qi → DM)
Nsyntax(qi)

where qi → DM are specific mappings. Hsyntax(Q) is computed by applying Psyntax into Shannon’s

entropy formula [13].
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Who is the daughter of Bill Clinton married to?
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:Mark_Mezvinsky

Hstruct(:Chelsea_Clinton) = 5

Hsyntax(q) = 3

Hstruct(:Bill_Clinton) = 6

Hmatching(“Bill Clinton”,I) = 5.3

Hmatching(“daughter of”,P) = 0.181

Hmatching(“married to”,P) = 0.193

Hstruct(DBpedia)  Hdiv(C
Q
,DBpedia) 

Hterm(“daughter of”) = 1.985

Hterm(“married to”) = 5.730

Hstruct(:Bill_Clinton, :child) = 0

Hstruct(:Chelsea_Clinton, :spouse) = 0
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Figure 3: Instantiation of the query-entropy model for an example query.

4.1.2 Structural Entropy (Hstruct)

The structural entropy defines the complexity of a database based on the possible propositions that can be

encoded under its schema. It provides a numerical description of the amount of information expressed in

the database, independent of the query. Pollard & Biermann [11] proposed a structural entropy measure

to quantify the entropy of a structured database. The entropy is computed by taking into account the

number of predicates and constants and their syntactic combination. Figure 2 and Figure 3(5,8,12)

depicts Hstruct. The entropy of a constant c or a predicate π are defined as a function of the cardinality

of the set of tuples in which the constant or the predicate is inserted. Further details are available in [11].

4.1.3 Terminological Entropy (Hterm)

The terminological entropy focuses on quantifying an estimate on the amount of synonymy and vague-

ness for the query or database terms. Let t be a query or database term containing the sequence of words

<w0, w1, ..., wn>. The terminological entropy is defined as a function of Pterm(wi, wj), i.e. the proba-

bility of a word wi being expressed as a wj−th related word for the associated ws sense (Figure 1). Under

the query-database semantic matching problem, the relation between wi and wj can easily transcend the

synonym relation, expressing a broader semantic relatedness relationship. Semantic relatedness will in-

clude both taxonomic (including different abstraction levels) and non-taxonomic relationships. As an

absolute number of relationships cannot be enumerated, approximate entropy measures can be used to

estimate the terminological entropy of a term. Figure 2 and Figure 3(6,10) depicts Hterm.

One example of approximate terminological entropy measures is the translational entropy (Melamed,

1996) [10] which uses the coherence in the translation of a word (translational distribution) as an entropy

measure. Given a set of word pairs of a set of ordered word pairs (s, t), respectively coming from a

source language and a target language, an iterative process is used to determine the frequency F (s, t) in

which a word s is translated to a word t where F (s) is the absolute frequency of the source word in the

text. The probability that s translates to t is defined as P (t|s) = F (s, t)/F (s). The notion of probability

is defined by the translational distribution, the term H(T |s) is generated, calculating the entropy of a
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Measure Semantic Mea-

sure Category

Type Semantic Phe-

nomena

Application

Pollard & Biermann [11] Structural Precise Possibilities Query-Data

Alignment or

Data

Translational Entropy

(Melamed [10])

Terminological Approximate Ambiguity,

Synonymy,

Vagueness

Query or Data

Distributional Entropy Terminological Approximate Ambiguity,

Vagueness

Query or Data

Matching Entropy Terminological Approximate Ambiguity,

Vagueness

Query-Data En-

tity Alignments

Table 1: Classification of entropy measures according to associated features.

given word s against the target words set T : Htrans(T |s) = − ∑
t∈T

P (t|s) log P (t|s).

4.1.4 Matching Entropy (Hmatching)

Consists of measures which describe the uncertainty involved in the query-data matching/alignment

between query terms and dataset entities. While terminological entropy measures provide an isolated

estimate of the entropy, providing a prospective estimate of the matching complexity, the query-data

matching entropy provides an estimate based on the set of potential alignments. These measures com-

pute the uncertainty/ambiguity of an alignment under a semantic model Σ. Let q be an entity candidate

in the query and let ei be an i-th alignment candidate in the dataset. The query-data matching entropy

can be estimated using the complement of a similarity metric 1 − simspace(−→q ,−→ei ) such as cosine sim-

ilarity, over a word = {w0, · · · , wm} or concept = {c0, · · · , cn} (e.g. distributional semantic model

[8]) vector spaces. Distributional semantic models, semantic models based on the statistical patterns of

co-occurrence of words within a large corpora can provide practical estimators for Hmatching. Figure

2 and Figure 3(4,7,11) depicts the Hmatching. In this case the entropy is not defined as a function of a

probability but it is associated with a score.

5 Validation & Analysis

This section focuses on the validation and analysis of the proposed semantic complexity model. The

model is validated using the Question Answering over Linked Data (QALD) 2011/2012 test collection

[2], which is used as a challenge for the comparative evaluation of question answering systems over

Linked Datasets. The performance of the participating Question Answering (QA) systems in addressing

the schema-agnostic natural language queries is used as a gold standard for the validation of the semantic

entropy model. The assumption is that queries with lower entropy positively correlate with the precision

and recall performance of the system.

The QALD 2011/2012 test collections consist of 150 natural language queries over DBpedia 3.6 and

DBpedia 3.71 as datasets. The QALD test collection was generated as a set of queries created by users

around entities described in DBpedia. The set of questions covers different answer types and topics (e.g.

proteins, countries, cities, companies, artists, planets, politicians, music, etc). QALD natural language

queries explore different query patterns in the database.

The approximate entropy measures were setup using the following parameters:

• Translational Entropy: used the European Parliament Parallel Corpus for the generation of the

translational corpus. The measure employed seven bitexts translating from English to Spanish,

French, Portuguese, Italian, Greek, Swedish and Dutch, which were averaged to generate the final

score.

1http://dbpedia.org/
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• Matching Entropy: Generated as a set of vectors using the Explicit Semantic Analysis (ESA) [7]

distributional semantic model over the Wikipedia 2013 corpus.

The correlation between each entropy measure and the f-measure of the participating QA systems

was calculated taking into account the 150 queries in the test part of the QALD 2011 and 2012 test

collections. Four top-performing QA systems were used in the evaluation: PowerAqua [9], Freya [4]

for QALD 2011 and QAKis [1] and MHE for QALD 2012. The inter-annotator agreement between

the PowerAqua [9] and Freya [4] is κ = 0.501 (95% confidence interval, ‘moderate’ agreement) and

between QAKis [1] and MHE is κ = 0.236 (95% confidence interval, ‘fair’ agreement). A multiple linear

regression model based on Hsyntax, Hterm (Htrans), Hmatching (Hdist) and Hstruct was built.

The regression model parameters are shown in Table 2. Hsyntax has a significant negative correlation

with f-measure showing that the number of possible syntactical interpretations have a significant impact

in the query interpretation process. Another significant correlation is given by the terminological entropy

measure over the terms in the query which map to predicates (Hterm, calculated by the translational

entropy Htrans) The correlation shows that the translational entropy provide a valid estimator which

reflect the higher level of ambiguity, synonymy and vagueness for predicate-type elements (the higher

semantic gap for predicates is confirmed in Table 3). The Hmatching instantiated as Hdist also presents

a significant correlation for predicates, confirming its suitability as an estimator for the vocabulary gap.

The structural entropy Hstruct of instances and classes showed a negative correlation with the f-

measure. The correlation is not significant for the structural entropy of the properties. This assymetry

can be explained by the fact that in RDF the class or instance in most of the cases define the topic

of the query (What is the highest mountain?, Who is the wife of Barack Obama?) having a higher

specificity and being more discriminative in the definition of the data search space, while the properties

tend to be more generic and reused across different contexts. The average structural entropy of instances

(5.93) is significantly lower than the average structural entropy of properties (27.18). A query over a

structurally more complex / better described entity (Barack Obama, with 505 associated triples) tend to

be more difficult to resolve when compared to a less structurally complex entity (Michelle Obama, 268

associated triples).

Entropy Measure Estimate Std. Error t-value Pr(>—t—)

Hsyntax -0.05632 0.01697 -3.317 0.0011

Hstruct Inst/Class (Sum) 0.00016 0.00599 0.027 0.97868

Hstruct Prop (Sum) -0.00013 0.00155 -0.086 0.93146

Htrans Pred (Sum) -0.01330 0.01666 -0.798 0.42610

Hdist Pred (Sum) -0.00202 0.00810 -0.249 0.80348

Table 2: Linear regression model between the evaluated entropy measures and the average f-measure of

QA systems. Multiple R-squared = 0.1094 and adjusted R-squared = 0.0771

In addition to the entropy analysis, the queries were analyzed and categorized according to three

dimensions (Figure 4): (i) query-term entity alignments, (ii) query features and (iii) query structure. This

categorization supports a more in depth analysis of the impact of semantic complexity in the querying

process.

All the 150 query-database alignments were analysed according to the type of their lexical alignment

(semantically related, similar string (Dice coefficient >0.5), substring, identical). The distribution of

query-database alignments is shown in Table 3. The proportion of instances which are identical to the

query term is significantly larger compared to other categories, showing that the lexical variability for

instances (constants) is much smaller. This is explained by the fact that instances usually map to named

entities, which are less bound to synonymy, abstraction-level variations and vagueness. In contrast,

properties and classes (predicates) tend to map to less specific terms, and are more bound to ambiguity,

synonymy and vagueness. This is confirmed by the larger proportion of alignments for properties and

classes under the semantically related category.

The queries were also analysed and categorized according to a set of query features: contains in-
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Vocabulary Alignment Type Vocabulary Type Value

Semantically Related Class 0.294

String Similar Class 0.117

Identical Class 0.117

Substring Class 0.470

Identical Complex Class 0.5

String Similar Complex Class 0.1

Semantically Related Complex Class 0.4

Semantically Related Instance 0.098

Identical Instance 0.696

Substring Instance 0.147

String Similar Instance 0.049

Missing Vocabulary Match Instance 0.009

Missing Vocabulary Match Null 1

Substring Predicate 0.168

Missing Vocabulary Match Predicate 0.109

Semantically Related Predicate 0.411

Identical Predicate 0.168

String Similar Predicate 0.142

Identical Value 0.25

Substring Value 0.75

Table 3: Distribution of vocabulary gap types for each entity type (QALD 2011/2012).

Give me all cities in New Jersey with more than 100000 inhabitants.

Hstruct(dbpedia:Claudia_Schiffer) = 5

Hmatching(dbp:populationTotal) = 8.915

Hterm(tall) = 3.225

Hmatching(dbp:height) = 0.150

Hstruct(dbp:height) = 14

Hstruct(dbp:populationTotal) = 18

Hsyntax = 1

Contains instance reference

Contains property reference
Query feature

Triple pattern: instance-property-variable1How tall is Claudia Schiffer?

m(Claudia Schiffer, Claudia Schiffer) = identical

m(inhabitants, population Total) = related

m(tall, height) = related

Hstruct(dbpedia:New_Jersey) = 5

Hterm(inhabitants) = 2.048

Hstruct(dbpedia:City) = 11

m(New Jersey, New Jersey) = identicalm(cities, City) = string similar

Contains instance reference

Contains property referenceQuery feature

Contains operator

Triple pattern: 

instance-property-variable1

variable1-type-class

operator

Hterm(cities) = 2.597

Hsyntax = 3

What is the highest mountain?Hsyntax = 1

Hstruct(dbpedia:Mountain) = 7

m(mountain, Mountain) = identical

Hterm(highest) = 4.793

Hmatching(dbp:elevation) = 1.577

Hstruct(dbp:elevation) = 14

m(highest, elevation) = related

Contains property referenceQuery feature

Contains operator

Contains class reference Triple pattern: 

class-type-variable1

variable1-property-variable2

operator

Hterm(mountain) = 3.783

1

2

3

Figure 4: Entropy and query features for example queries.

stance reference, contains class reference, contains property reference, contains complex class reference

(a complex class is a class with more than two words), contains value reference contains operator ref-

erence, is a Yes/No question. The features express the core natural language query - database mappings

that need to be addressed by the query mechanism. The correlation between the query features and the

average f-measure for the QA systems was also calculated and a multiple linear regression model was

built (Table 4). Queries containing references to instances were positively correlated to the f-measure,

while queries not containing instances were negatively correlated. This can be interpreted by combining

this analysis with the alignment information from Table 3: predicate-type alignments are more bound

to vocabulary variation (higher Hterm, Hvocab) and are more difficult to resolve when compared to in-

stance/value alignments.

301



Entropy Measure Estimate Std. Error t-value Pr(>—t—)

Instance 0.0750 0.1177 0.638 0.5247

Class -0.0083 0.0816 -0.102 0.9189

Complex Class -0.2118 0.1010 -2.097 0.0378

Property 0.0737 0.1659 0.444 0.6576

Value -0.0565 0.1184 -0.478 0.6335

Yes/No 0.0054 0.1138 0.048 0.9615

Operator -0.1506 0.0740 -2.036 0.0437

Table 4: Linear regression model between the query features and the average f-measure of QA systems.

Multiple R-squared = 0.1171, adjusted R-squared = 0.09817.

Both entropy (Hsyntax, Hstruct, Hterm, Hmatching) and query features (instances, complex classes,

operators) can be used as estimators for semantic complexity. Queries which were not or were poorly

answered by the reference systems showed clear patterns which are correlated with entropy values: (i)

high syntactic complexity (high Hsyntax); (ii) high vocabulary gap (high Hmatching, Hterm) and (iii)

predicate-based query (no instance reference in the query) (Hstruct, Hterm). Table 5 provides the clas-

sification of the set of unanswered/poorly answered queries according to the presence of high entropy

values and also lists the non-trivial query term - database entity alignments. All unanswered queries fall

into one (62%) or more (38%) of these categories.

5.1 Reflections on the Design of Schema-agnostic Query Mechanisms

The entropy measures and query feature analysis of the previous section can be used to define heuristics

for maximizing the probability of a correct query-data matching in a schema-agnostic query scenario. A

list of heuristics for addressing schema-agnostic queries are summarized below, based on the previous

analysis:

1. Prioritize the alignment of constants (instances): Instances are less bound to vocabulary vari-

ation (lower Hterm, Hvocab). The lower structural entropy Hstruct associated with constants also

allows the reduction of the search space.

2. Hterm can be used as a heuristic for matching complexity: Having an estimation of the potential

vocabulary variation of query terms predicates can be used to allow the prioritization of alignments

with less ambiguity, synonymy and vagueness. Hterm can be used to prioritize easier mappings.

3. Hsyntax is a strong estimator of query complexity: Queries with complex compositional pred-

icate patterns generate large entropy values which propagates to the matching stage. Schema-

agnostic query mechanisms can explore query constraining approaches to minimize high Hsyntax

entropy values.

4. Hmatching can be used as an estimator for the quality of the predicate alignment: This value

can be used to estimate the uncertainty of the alignment, supporting, for example, disambiguation

mechanisms & clarification dialogs.

6 Conclusions & Future Work

This paper provides an analysis of measures of semantic complexity for schema-agnostic queries. A

semantic model was built to understand the semantic dynamics behind the query-database semantic

matching. Information theoretic models were used as a quantification model to measure the semantic

complexity of mapping queries to database elements. The entropy measures and other query features

were evaluated using a set of 150 natural language schema-agnostic queries over DBpedia by comparing

the correlation between different Question Answering systems and the entropy measures. Syntactical,
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Query Syntactic

compl.

(Hsyntax)

Vocab. gap

(Hmatching ,

Hterm)

Pred. Pivot

(Hstruct, Hterm)

Non-trivial alignments

How many monarchical countries are there

in Europe?

X monarchical countries -

governmentType

Give me the capitals of all U.S. states. X
Which states border Utah? X border - east — border -

southeast — border - south

— border - northeast —

border - north — border -

west

Which mountain is the highest after the An-

napurna?

X X highest - elevation

Which bridges are of the same type as the

Manhattan Bridge?

X X type - design — type - de-

sign

Which state of the United States of America

has the highest density?

X X highest density - densi-

tyrank

When did Germany join the EU? X join - accessioneudate

Give me all soccer clubs in Spain. X null - ground

Which German cities have more than 250000

inhabitants?

X X X inhabitants - population-

Total

How many students does the Free University

in Amsterdam have?

X

What is the longest river? X X longest - length

Does the new Battlestar Galactica series

have more episodes than the old one?

X

Give me all people that were born in Vienna

and died in Berlin.

X X died - deathPlace — born -

birthPlace

Do Harry and William, Princes of Wales,

have the same mother?

X

Give me all Australian nonprofit organiza-

tions.

X null - null

List all boardgames by GMT. X null - publisher

Which countries are connected by the

Rhine?

Was the Cuban Missile Crisis earlier than the

Bay of Pigs Invasion?

X X earlier - date

Give me all Frisian islands that belong to the

Netherlands.

X X null - country

Which Greek goddesses dwelt on Mount

Olympus?

X dwelt - abode

Which daughters of British earls died in the

same place they were born in?

X X born - birthPlace — died -

deathPlace

Who was called Scarface? X called - nickname

Give me a list of all American inventions. X X null - null

Which films starring Clint Eastwood did he

direct himself?

X

Show me all songs from Bruce Springsteen

released between 1980 and 1990.

X X songs - artist — release -

releaseDate

Which movies did Sam Raimi direct after

Army of Darkness?

X

What is the founding year of the brewery that

produces Pilsner Urquell?

X founding year - foundation

— brewery - brewery

Which country does the creator of Miffy

come from?

X creator - creator — coun-

try - nationality

For which label did Elvis record his first al-

bum?

X null - releaseDate — la-

bel - recordLabel — null -

artist —

% of unanswered questions 51.7% 68.9% 20.6%

Table 5: ‘Hard queries’, i.e. queries which were nor or were poorly answered by the benchmarking

systems. ‘Checked’ dimensions represent high entropy values.
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terminological and matching entropies had a significant correlation with the results (f-measure) of the

benchmarked systems. Based on the results, recommendations for the design of schema-agnostic query

approaches were suggested. Future work will concentrate on the refinement of the entropy measures.
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